Lithographic precision is as or more important than resolution. For decades, the semiconductor industry has been able to work with ±5% precision. However, for other applications such as micronanoelectromechanical systems, optical elements, and biointerface applications, higher precision is desirable. Lyding et al [Appl. Phys. Lett.64, 11 (1999)] have demonstrated that a scanning tunneling microscope can be used to remove hydrogen (H) atoms from a silicon (100) 2 × 1 H-passivated surface through an electron stimulated desorption process. This can be considered e-beam lithography with a thin, self-developing resist. Patterned hydrogen layers do not make a robust etch mask, but the depassivated areas are highly reactive since they are unsatisfied covalent bonds and have been used for selective deposition of metals, oxides, semiconductors, and dopants. The depassivation lithography has shown the ability to remove single H atoms, suggesting the possibility of precise atomic patterning. This patterning process is being developed as part of a project to develop atomically precise patterned atomic layer epitaxy of silicon. However, significant challenges in sample preparation, tip technology, subnanometer pattern placement, and patterning throughput must be overcome before an automated atomic precision lithographic technology evolves.

1.
D. M.
Eigler
and
E. K.
Schweizer
,
Nature (London)
344
,
524
(
1990
).
2.
Michael A.
Walsh
and
Mark C.
Hersam
,
Annu. Rev. Phys. Chem.
60
,
193
(
2009
).
3.
J.
Hartwich
,
L.
Dreeskornfeld
,
V.
Heisig
,
S.
Rahn
,
O.
Wehmeyer
,
U.
Kleineberg
, and
U.
Heinzmann
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S685
(
1998
).
4.
Richard
Silver
,
Kai
Li
,
Summanth
Chikkamaranahalli
,
Pradeep
Namboodiri
, and
Joe
Fu
, EIPBN 28 May,
2009
,
Marco Island Florida
(unpublished).
5.
D. R.
Bowler
,
Phys. Rev. B
67
,
115341
(
2003
).
6.
J. W.
Lyding
,
T.-C.
Shen
,
J. S.
Hubacek
,
J. R.
Tucker
, and
G. C.
Abeln
,
Appl. Phys. Lett.
64
,
2010
(
1994
).
7.
Laetitia
Soukiassian
,
Andrew J.
Mayne
,
Marilena
Carbone
, and
Gérald
Dujardin
,
Phys. Rev. B
68
,
035303
(
2003
).
8.
T.-C.
Shen
,
C.
Wang
,
G. C.
Abeln
,
J. R.
Tucker
,
J. W.
Lyding
,
Ph.
Avouris
, and
R. E.
Walkup
,
Science
268
,
1590
(
1995
).
9.
Joel K. W.
Yang
,
Bryan
Cord
,
Joseph
Klingfus
,
Sung-Wook
Nam
,
Ki-Bum
Kim
,
Michael J.
Rooks
, and
Karl K.
Berggren
, EIPBN 28 May,
2009
,
Marco Island Florida
(unpublished);
Joel
Yang
(private communication).
10.
Mathew
Sztelle
, Ph.D. thesis,
University of Illinois U-C
,
2008
.
11.
M. C.
Hersam
,
N. P.
Guisinger
, and
J. W.
Lyding
,
Nanotechnology
11
,
70
(
2000
).
12.
Anne-Sophie
Lucier
, M.S. thesis,
McGill University Montréal
,
2004
.
13.
X.
Tong
and
R. A.
Wolkow
,
Surf. Sci.
600
,
L199
(
2006
).
14.
Hong-Shi
Kuo
,
Ing-Shouh
Hwang
,
Tsu-Yi
Fu
,
Yu-Chun
Lin
,
Che-Cheng
Chang
, and
Tien T.
Tsong
,
e-J. Surf. Sci. Nanotechnol.
4
,
233
(
2006
).
15.
Moh’d
Rezeq
,
Jason
Pitters
, and
Robert
Wolkow
,
J. Chem. Phys.
124
,
204716
(
2006
).
16.
H.-W.
Fink
,
IBM J. Res. Dev.
30
,
460
(
1986
).
17.
HeeSung
Choi
,
Min
Huang
,
J. B.
Ballard
,
K. T.
He
,
S. W.
Schmucker
,
J. W.
Lyding
,
J. N.
Randall
, and
Kyeongjae
Cho
,
MRS Spring Meeting
2009
(unpublished).
18.
Joseph W.
Lyding
and
Scott
Schmucker
, U.S. Patent Application No. 20080105539 (pending).
19.
Martin
Fuechsle
,
Frank J.
Rueβ
,
Thilo C. G.
Reusch
,
Mladen
Mitic
, and
Michelle Y.
Simmons
,
J. Vac. Sci. Technol. B
25
,
2562
(
2007
).
20.
Gary
Bradski
and
Adrian
Kaebler
,
Learning OpenCV. Computer Vision With The OpenCV Library
, 1st ed. (
O'Reilly Media Inc.
,
Sebastopol, CA
,
2008
).
21.
Henry I.
Smith
,
Scott D.
Hector
,
M. L.
Schattenburg
, and
Erik H.
Anderson
,
J. Vac. Sci. Technol. B
9
,
2992
(
1991
).
22.
B. D.
Terris
,
T.
Thomson
, and
G.
Hu
,
Microsyst. Technol.
13
,
189
(
2007
).
23.
Nadim I.
Maluf
and
R.
Fabian Pease
,
J. Vac. Sci. Technol. B
9
,
2986
(
1991
).
You do not currently have access to this content.