In this work, the authors report on a quantitative investigation of lateral-force gradient and lateral force between a tungsten tip and Si(111)-(7×7) surface using combined noncontact lateral-force microscopy and scanning tunneling microscopy. Simultaneous lateral-force gradient and scanning tunneling microscopy images of single and multiatomic step are obtained. In our measurement, tunnel current is used as feedback. The lateral-stiffness contrast has been observed to be 2.5Nm at a single atomic step, in contrast to 13Nm at a multiatomic step on Si (111) surface. They also carried out a series of lateral stiffness-distance spectroscopy, which show a sharp increase in tip-surface interaction stiffness as the sample is approached toward the surface.

1.
B. N. J.
Persson
,
Sliding Friction, Physical Principles and Applications
, 2nd ed. (
Springer
,
Berlin
,
2000
).
2.
C. M.
Mate
,
G. M.
McCleland
,
R.
Erlandsson
, and
S.
Chiang
,
Phys. Rev. Lett.
59
,
1942
(
1987
).
3.
L.
Howald
,
R.
Luthi
,
E.
Meyer
,
G.
Gerth
,
H.
Haefke
,
R.
Overney
, and
H. J.
Guentherodt
,
J. Vac. Sci. Technol. B
12
,
2227
(
1994
).
4.
R.
Bennewitz
,
E.
Gnecco
,
T.
Gyalog
, and
E.
Meyer
,
Tribol. Lett.
10
,
51
(
2001
).
5.
S. P.
Jarvis
,
H.
Yamada
,
K.
Kobayashi
,
A.
Toda
, and
H.
Tokumoto
,
Appl. Surf. Sci.
157
,
314
(
2000
).
6.
F.
Giessibl
,
M.
Herz
, and
J.
Manhart
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12006
(
2002
).
7.
O.
Pfeiffer
,
R.
Bennewitz
,
A.
Baratoff
, and
E.
Meyer
,
Phys. Rev. B
65
,
161403
(
2002
).
8.
S.
Kawai
,
S.
Kitamura
,
D.
Kobayashi
, and
H.
Kawakatsu
,
Appl. Phys. Lett.
87
,
173105
(
2005
).
9.
A.
Schwarz
,
H.
Hölscher
,
S. M.
Langkat
, and
R.
Wiesendanger
,
AIP Conf. Proc.
697
,
68
(
2003
).
10.
M.
Abe
,
Y.
Sugimoto
,
T.
Namikawa
,
K.
Morita
,
N.
Oyabu
, and
S.
Morita
,
Appl. Phys. Lett.
90
,
203103
(
2007
).
11.
A.
Oral
,
R. A.
Grimble
,
H. Ö.
Özer
,
P. M.
Hoffmann
, and
J. B.
Pethica
,
Appl. Phys. Lett.
79
,
1915
(
2001
).
12.
P. M.
Hoffmann
,
A.
Oral
,
R. A.
Grimble
,
H. Ö.
Özer
,
S.
Jeffery
, and
J. B.
Pethica
,
Proc. R. Soc. London, Ser. A
457
,
1161
(
2001
).
13.
H. Ö.
Özer
,
M.
Atabak
,
R. M.
Elliatioglu
, and
A.
Oral
,
Appl. Surf. Sci.
188
,
301
(
2002
).
14.
M.
Atabak
and
A.
Oral
(unpublished).
15.
NanoMagnetics Instruments Ltd.
, Suite 290, 266 Banbury Road, Oxford OX2 7DL, UK.
16.
P. M.
Hoffmann
,
Appl. Surf. Sci.
210
,
140
(
2003
).
17.
J.
Heinrichs
,
Solid State Commun.
13
,
1595
(
1973
).
18.
W.
Buhl
,
Z. Phys. B
23
,
221
(
1976
).
19.

The effective barrier height is calculated Ii(z)=I0e(22mϕ)z, where m is the mass of the electron, is Planck’s constant, ϕ is the effective barrier height, and z is the tip-sample separation. I0 is a function of the applied voltage, and the pure barrier height could be slightly larger.

You do not currently have access to this content.