The electrical characteristics of AlGaN/GaN heterostructures and GaN Schottky diodes were correlated with dislocations and other material defects. GaN epitaxial films were grown using conventional metal organic chemical vapor deposition (MOCVD) and pendeo-epitaxy, while AlGaN/GaN heterostructures were grown using conventional MOCVD. Current-voltage (I-V) measurements displayed a wide variation in ideality factor and reverse leakage current density. Schottky diodes fabricated on the pendeo-epitaxial material displayed improved ideality factor (n=1.35) and leakage current density measured at 2V(J=54.5A/cm2) compared to conventionally grown GaN (n=1.73,J=117A/cm2). The electrical properties of the Schottky diodes on the AlGaN/GaN heterostructure varied across the sample, showing no spatial dependence. Ideality factor and Schottky barrier height ranged n=1.63.0 and ϕB=0.690.87, respectively. Reverse leakage current density at 2V varied by up to three orders of magnitude. Etch pit density and atomic force microscopy revealed three orders of magnitude reduction in dislocation density for the pendeo-epitaxial GaN compared to conventional GaN, while cathodoluminescence indicated lower defect density for the pendeo-epitaxial GaN. Etch pit density revealed almost an order of magnitude lower dislocation density beneath those diodes with improved characteristics on the AlGaN/GaN heterostructure.

1.
T.
Palacios
,
A.
Chakraborty
,
S.
Rajan
,
C.
Poblenz
,
S.
Keller
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
26
,
781
(
2005
).
2.
C. S.
Oh
,
C. J.
Youn
,
G. M.
Yang
,
K. Y.
Lim
, and
J. W.
Yang
,
Appl. Phys. Lett.
86
,
012106
(
2005
).
3.
C.
Sanabria
,
A.
Chakraborty
,
H.
Xu
,
M. J.
Rodwell
,
U. K.
Mishra
, and
R. A.
York
,
IEEE Electron Device Lett.
27
,
19
(
2006
).
4.
A. V.
Vertiatchikh
and
L. F.
Eastman
,
IEEE Electron Device Lett.
24
,
535
(
2003
).
6.
S.
Arulkumaran
,
T.
Egawa
,
H.
Ishikawa
, and
T.
Jimbo
,
Appl. Phys. Lett.
81
,
3073
(
2002
).
7.
O. -H.
Nam
,
M. D.
Bremser
,
T. S.
Zheleva
, and
R. F.
Davis
,
Appl. Phys. Lett.
71
,
2638
(
1997
).
8.
T. S.
Zheleva
,
S. A.
Smith
,
D. B.
Thompson
,
K. J.
Linthicum
,
P.
Rajagopal
, and
R. F.
Davis
,
J. Electron. Mater.
28
,
L5
(
1999
).
9.
R. F.
Davis
,
T.
Gehrke
,
K. J.
Linthicum
,
T. S.
Zheleva
,
E. A.
Preble
,
P.
Rajagopal
,
C. A.
Zorman
, and
M.
Mehregany
,
J. Cryst. Growth
225
,
134
(
2001
).
10.
P.
Kozodoy
,
J. P.
Ibbetson
,
H.
Marchand
,
P. T.
Fini
,
S.
Keller
,
J. S.
Speck
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Appl. Phys. Lett.
73
,
975
(
1998
).
11.
B. J.
Zhang
,
T.
Egawa
,
G. Y.
Zhao
,
H.
Ishikawa
,
M.
Umeno
, and
T.
Jimbo
,
Appl. Phys. Lett.
79
,
2567
(
2001
).
12.
J. W. P.
Hsu
,
M. J.
Manfra
,
D. V.
Lang
,
S.
Richter
,
S. N. G.
Chu
,
A. M.
Sergent
,
R. N.
Kleiman
,
L. N.
Pfeiffer
, and
R. J.
Molnar
,
Appl. Phys. Lett.
78
,
1685
(
2001
).
13.
A. R.
Arehart
,
B.
Moran
,
J. S.
Speck
,
U. K.
Mishra
,
S. P.
DenBaars
, and
S. A.
Ringel
,
J. Appl. Phys.
100
,
023709
(
2006
).
14.
A.
Hinoki
,
S.
Kamiya
,
T.
Tsuchiya
,
T.
Yamada
,
J.
Kikawa
,
T.
Araki
,
A.
Suzuki
, and
Y.
Nanishi
,
Phys. Status Solidi B
4
,
2728
(
2007
).
15.
A. P.
Zhang
,
L. B.
Rowland
,
E. B.
Kaminsky
,
V.
Tilak
,
J. C.
Grande
,
J.
Teetsov
,
A.
Vertiatchikh
, and
L. F.
Eastman
,
J. Electron. Mater.
32
,
388
(
2003
).
16.
T. S.
Zheleva
,
M. A.
Derenge
,
K. A.
Jones
,
P. B.
Shah
,
D. J.
Ewing
,
J.
Molstad
, and
U.
Lee
,
Appl. Phys. Lett.
(to be published).
17.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
), pp.
279
280
.
18.
19.
S.
Zhu
,
R. L.
Van Meirhaeghe
,
C.
Detavernier
,
F.
Cardon
,
G. P.
Ru
,
X. -P.
Qu
, and
B. -Z.
Li
,
Solid-State Electron.
44
,
663
(
2000
).
20.
B. J.
Skromme
,
E.
Luckowski
,
K.
Moore
,
M.
Bhatnagar
,
C. E.
Weitzel
,
T.
Gehoski
, and
D.
Ganser
,
J. Electron. Mater.
29
,
376
(
2000
).
21.
D. J.
Ewing
,
L. M.
Porter
,
Q.
Wahab
,
X.
Ma
,
T. S.
Sudarshan
,
S.
Tumakha
,
M.
Gao
, and
L. J.
Brillson
,
J. Appl. Phys.
101
,
114514
(
2007
).
22.
R. F.
Schmitsdorf
,
T. U.
Kampen
, and
W.
Mönch
,
J. Vac. Sci. Technol. B
15
,
1221
(
1997
).
23.
J. P.
Sullivan
,
R. T.
Tung
,
D. J.
Eaglesham
,
F.
Schrey
, and
W. R.
Graham
,
J. Vac. Sci. Technol. B
11
,
1564
(
1993
).
24.
P.
Kordos
,
J.
Bernat
,
M.
Marso
,
H.
Lüth
,
F.
Rampazzo
,
G.
Tamiazzo
,
P.
Pierobon
, and
G.
Meneghesso
,
Appl. Phys. Lett.
86
,
253511
(
2005
).
25.
M. H.
Zaldivar
,
P.
Fernandez
, and
J.
Piqueras
,
J. Appl. Phys.
83
,
2796
(
1998
).
26.
E. J.
Miller
,
D. M.
Schaadt
,
E. T.
Yu
,
X. L.
Sun
,
L. J.
Brillson
,
P.
Waltereit
, and
J. S.
Speck
,
J. Appl. Phys.
94
,
7611
(
2003
).
27.
H.
Kim
,
M.
Schuette
,
H.
Jung
,
J.
Song
,
J.
Lee
,
W.
Lu
, and
J. C.
Mabon
,
Appl. Phys. Lett.
89
,
053516
(
2006
).
28.
J.
Miller
,
E. T.
Yu
,
P.
Waltereit
, and
J. S.
Speck
,
Appl. Phys. Lett.
84
,
535
(
2004
).
You do not currently have access to this content.