The creation of stable, highly conductive ultrashallow junctions in strained Si is a key requirement for future Si based devices. It is shown that in the presence of tensile strain, Sb becomes a strong contender to replace As as the dopant of choice due to advantages in junction depth, junction steepness, and crucially, sheet resistance. While 0.7% strain reduces resistance for both As and Sb, a result of enhanced electron mobility, the reduction is significantly larger for Sb due to an increase in donor activation. Differential Hall and secondary-ion mass spectroscopy measurements suggest this to be a consequence of a strain-induced Sb solubility enhancement following epitaxial regrowth, increasing Sb solubility in Si to levels approaching 1021cm3. Advantages in junction depth, junction steepness, and dopant activation make Sb an interesting alternative to As for ultrashallow doping in strain-engineered complementary metal-oxide semiconductor devices.

1.
The International Technology Roadmap for Semiconductors
2006
update.
2.
F.
Schaffler
,
Semicond. Sci. Technol.
12
,
1515
(
1997
).
3.
T.
Alzanki
,
R.
Gwilliam
,
N.
Emerson
, and
B. J.
Sealy
,
Appl. Phys. Lett.
85
,
1979
(
2004
).
4.
N. S.
Bennett
,
N. E. B.
Cowern
,
A. J.
Smith
,
R. M.
Gwilliam
,
B. J.
Sealy
,
L.
O’Reilly
,
P. J.
McNally
,
G.
Cooke
, and
H.
Kheyrandish
,
Appl. Phys. Lett.
89
,
182122
(
2006
).
5.
C. W.
White
,
S. R.
Wilson
,
B. R.
Appleton
, and
F. W.
Young
, Jr.
,
J. Appl. Phys.
51
,
738
(
1980
).
6.
R.
Duffy
,
T.
Dao
,
Y.
Tamminga
,
K.
van der Tak
,
F.
Roozeboom
, and
E.
Augendre
,
Appl. Phys. Lett.
89
,
071915
(
2006
).
7.
B.
Sadigh
 et al,
Appl. Phys. Lett.
80
,
4738
(
2002
).
8.
N.
Sugii
,
S.
Irieda
,
J.
Morioka
, and
T.
Inada
,
J. Appl. Phys.
96
,
261
(
2004
).
9.
J.
Adey
,
R.
Jones
, and
P. R.
Briddon
,
Phys. Status Solidi C
2
,
1953
(
2005
).
10.
V.
Koteski
,
N.
Ivanovic
,
H.
Haas
,
E.
Holub-Krappe
, and
H. E.
Mahnke
,
Nucl. Instrum. Methods Phys. Res. B
200
,
60
(
2003
).
11.
C.
Reverant-Brizard
,
J. R.
Regnard
,
S.
Solmi
,
A.
Armigliato
,
S.
Valmorri
,
C.
Cellini
, and
F.
Romanato
,
J. Appl. Phys.
79
,
9037
(
1996
).
12.
N. S.
Bennett
,
A. J.
Smith
,
B.
Colombeau
,
R.
Gwilliam
,
N. E. B.
Cowern
, and
B. J.
Sealy
,
Mater. Sci. Eng., B
124–125
,
305
(
2005
).
13.
P.
Kringhoj
,
A. N.
Larsen
, and
S. Y.
Shirayev
,
Phys. Rev. Lett.
76
,
3372
(
1996
).
14.
J. S.
Williams
,
Nucl. Instrum. Methods Phys. Res.
209–210
,
219
(
1983
).
15.
R.
Duffy
,
V. C.
Venezia
,
K.
van der Tak
,
M. J. P.
Hopstaken
,
G. C. J.
Maas
,
F.
Roozeboom
,
Y.
Tamminga
, and
T.
Dao
,
J. Vac. Sci. Technol. B
23
,
2021
(
2005
).
16.
S.
Gannavaram
,
N.
Pesovic
, and
C.
Ozturk
,
Tech. Dig. - Int. Electron Devices Meet.
2000
,
437
.
17.
T.
Sanuki
 et al,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
65
.
You do not currently have access to this content.