Sheet resistance and leakage current density of spike rapid thermal processed, millisecond flash annealed, and chemical vapor deposition (CVD) grown ultrashallow junctions (USJs) are compared with the contactless junction photovoltage technique for measurement of sheet resistance and leakage current (RsL) and four-point probe (4PP) techniques. A significant leakage current increase for USJs formed in halo-implanted profiles is explained by high electron and hole recombination generation in the near-surface end-of-range damaged layer enhanced by trap-assisted tunneling. The reduced thermal budget of millisecond annealing allows junction formation with reduced dopant diffusion and lower sheet resistance. However, when strong halo doping is employed, there is a significant increase in junction leakage current relative to that for junctions formed by spike annealing. This rise in leakage current can be reduced by annealing the halo implants before implanting the USJ or by lowering the halo implant dose. USJs grown with CVD demonstrate low leakage current due to localization of recombination centers at the edge of the depletion layer where recombination (generation) is low. This study demonstrates the importance of characterizing USJs formed in halo profile using the contactless RsL technique and highlights the limitations of contact probes, such as four-point probes, for characterization of advanced ultralarge scale integrated junctions.

1.
See Table 69 in the Front End Process section of the ITRS05 (www.itrs.net).
2.
P.
Timans
 et al.,
Mater. Res. Soc. Symp. Proc.
912
,
0912
C01
(
2006
).
3.
T.
Clarysse
 et al.,
Mater. Res. Soc. Symp. Proc.
912
,
0912
C05
(
2006
).
4.
M.
Mansoori
,
A.
Jain
,
D. E.
Mercer
,
L.
Robertson
, and
P.
Kohli
,
Proc.-Electrochem. Soc.
2000-11
,
389
(
2002
).
5.
R.
Lindsay
 et al.,
J. Vac. Sci. Technol. B
22
,
306
(
2004
).
6.
P. M.
Solomon
,
D. J.
Frank
,
J.
Jopling
,
C.
D’Emic
,
O.
Dokumaci
,
P.
Ronsheim
, and
W. E.
Haensch
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
9
3
.
7.
J. E.
Park
,
J.
Shields
, and
D. K.
Schroder
,
Solid-State Electron.
47
,
855
(
2003
).
8.
E. C.
Jones
and
N. W.
Cheung
,
J. Vac. Sci. Technol. B
14
,
236
(
1996
).
9.
Roger L.
Verkuil
, U.S. Patent No. 5,442,297 (
1995
).
10.
V. N.
Faifer
,
M. I.
Current
,
T. M. H.
Wong
, and
V. V.
Souchkov
,
J. Vac. Sci. Technol. B
24
,
414
(
2006
).
11.
V. N.
Faifer
,
D. K.
Schroder
, and
M. I.
Current
,
Appl. Phys. Lett.
89
,
151123
(
2006
).
12.
T.
Clarysse
,
A.
Moussa
,
F.
Schaus
,
W.
Vandervorst
,
V. N.
Faifer
, and
M. I.
Current
,
Proceeding of INSIGHT-07 Workshop
,
Napa, CA
,
2007
(unpublished), p.
263
.
13.
W.
Lerch
 et al.,
Mater. Sci. Eng., B
124–125
,
24
(
2005
).
14.
S.
Paul
,
W.
Lerch
,
X.
Hebras
,
N.
Cherkashin
, and
F.
Cristiano
,
Mater. Res. Soc. Symp. Proc.
810
,
C5
4
(
2004
).
15.
W.
Lerch
 et al.,
ECS Trans.
3
, Issue 2,
77
(
2006
).
16.
F.
Ootsuka
 et al.,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
647
.
You do not currently have access to this content.