Pt Schottky diodes were fabricated on high-crystal-quality Al0.2Ga0.8NGaN epitaxial films grown using epitaxial AlN/sapphire template (AlN template), and their current transport characteristics were measured and analyzed. It was confirmed that reverse leakage currents in Schottky diodes formed on AlN template were drastically reduced compared with samples on sapphire formed with a low-temperature buffer layer. The current transport characteristics in Schottky diodes formed on AlN template were found to be almost explicable using the thermoionic emission and tunneling current components, unlike with samples formed on sapphire. This indicates that the amount of unintentional impurity levels near the surfaces is extremely small for those high-crystal-quality Schottky diodes. Hydrogen-sensing characteristics were also investigated for a PtAlGaNGaN Schottky diode formed on AlN template. The diode sensor exhibited sufficient changes in the reverse current even under exposure to extremely slight H2 concentration of 50ppm and exhibited clear reversible responses. These current changes seemed to be due to the reduction of the Schottky barrier height with H2 exposure.

1.
S.
Nakamura
,
T.
Mukai
, and
M.
Senoh
,
Jpn. J. Appl. Phys., Part 2
30
,
L1998
(
1991
).
2.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Appl. Phys., Part 2
35
,
L74
(
1996
).
3.
W.
Saito
,
M.
Kuraguchi
,
Y.
Takada
,
K.
Tsuda
,
I.
Omura
, and
T.
Ogura
,
IEEE Trans. Electron Devices
51
,
1913
(
2004
).
4.
T.
Kikkawa
,
Jpn. J. Appl. Phys., Part 1
44
,
4896
(
2005
).
5.
M.
Higashiwaki
and
T.
Matsui
,
Jpn. J. Appl. Phys., Part 2
44
,
L475
(
2005
).
6.
A.
Osinsky
,
S.
Gangopadhyay
,
B. W.
Lim
,
M. Z.
Anwar
,
M. A.
Khan
,
D. V.
Kuksenkov
, and
H.
Temkin
,
Appl. Phys. Lett.
72
,
742
(
1998
).
7.
B. P.
Luther
,
S. D.
Wolter
, and
S. E.
Mohney
,
Sens. Actuators B
56
,
164
(
1999
).
8.
J.
Schalwig
,
G.
Muller
,
U.
Karrer
,
M.
Eickhoff
,
O.
Ambacher
,
M.
Stutzmann
,
L.
Gorgens
, and
G.
Dollinger
,
Appl. Phys. Lett.
80
,
1222
(
2002
).
9.
K.
Matsuo
,
T.
Hashizume
, and
H.
Hasegawa
,
Appl. Surf. Sci.
244
,
273
(
2005
).
10.
J.
Song
,
W.
Lu
,
J. S.
Flynn
, and
G. R.
Brandes
,
Appl. Phys. Lett.
87
,
133501
(
2005
).
11.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
).
12.
H.
Hasegawa
and
S.
Oyama
,
J. Vac. Sci. Technol. B
20
,
1647
(
2002
).
13.
T.
Hashizume
,
J.
Kotani
,
A.
Basile
, and
M.
Kaneko
,
Jpn. J. Appl. Phys., Part 2
45
,
L111
(
2006
).
14.
J.
Kotani
,
M.
Kaneko
,
H.
Hasegawa
, and
T.
Hashizume
,
J. Vac. Sci. Technol. B
24
,
2148
(
2006
).
15.
T.
Shibata
,
K.
Asai
,
T.
Nagai
,
S.
Sumiya
,
M.
Tanaka
,
O.
Oda
,
H.
Miyake
, and
K.
Hiramatsu
,
MRS Symposia Proceedings No. 693
(
2002
), p.
541
.
16.
M.
Sakai
 et al,
J. Cryst. Growth
244
,
6
(
2002
).
17.
M.
Miyoshi
,
A.
Imanishi
,
T.
Egawa
,
H.
Ishikawa
,
K.
Asai
,
T.
Shibata
,
M.
Tanaka
, and
O.
Oda
,
Jpn. J. Appl. Phys., Part 1
44
,
6490
(
2005
).
18.
T.
Shibata
 et al,
Phys. Status Solidi C
0
,
2023
(
2003
).
19.
C. Y.
Chang
and
S. M.
Sze
,
Solid-State Electron.
13
,
727
(
1970
).
20.
T.
Hashizume
and
R.
Nakasaki
,
Appl. Phys. Lett.
80
,
4564
(
2002
).
21.
T.
Hashizume
and
H.
Hasegawa
,
Appl. Surf. Sci.
234
,
387
(
2004
).
22.
K. H.
Ploog
and
O.
Brandt
,
J. Vac. Sci. Technol. A
16
,
1609
(
1998
).
23.
A. J.
Ptak
 et al,
Appl. Phys. Lett.
79
,
2740
(
2001
).
24.
E. J.
Miller
,
X. Z.
Dang
, and
E. T.
Yu
,
J. Appl. Phys.
88
,
5951
(
2000
).
25.
E. J.
Miller
,
D. M.
Schaadt
,
E. T.
Yu
,
C.
Poblenz
,
C.
Elsass
, and
J. S.
Speck
,
J. Appl. Phys.
91
,
9821
(
2002
).
You do not currently have access to this content.