The field of molecular electronics is often limited by nonreproducible electrical device characteristics and low yields of working devices. These limits may result from inconsistencies in the quality and structure of the monolayers of molecules in the devices. In response, the authors have developed an ultrahigh vacuum vapor phase deposition method that reproducibly assembles monolayers of oligo(phenylene ethynylene) molecules (the chemical backbone of many of the molecules used in molecular electronics). To improve the structure and purity of the monolayer, the vapor phase assembly is performed in an ultrahigh vacuum environment using a low temperature organic thermal cell. Because vapor phase assembly does not require the use of solvents, a potential source of contamination is eliminated. The absence of solvents also permits the fabrication of complex device architectures that require photoresist patterning prior to the molecular assembly. Characterization via ellipsometry, x-ray photoelectron spectroscopy, and scanning tunneling microscopy shows that the monolayers are dense, chemisorbed, ordered, and chemically pure.

1.
C.
Zhou
,
M. R.
Deshpande
,
M. A.
Reed
,
L.
Jones
 II
, and
J. M.
Tour
,
Appl. Phys. Lett.
71
,
611
(
1997
).
2.
M. A.
Reed
,
L.
Chen
,
A. M.
Rawlett
,
D. W.
Price
, and
J. M.
Tour
,
Appl. Phys. Lett.
78
,
3735
(
2001
).
3.
I.
Kratochvilova
,
M.
Kocirik
,
J.
Mbindyo
,
A.
Zambao
,
T. E.
Mallauk
, and
T. S.
Mayer
,
J. Mater. Chem.
12
,
2927
(
2002
).
4.
F. F.
Fan
 et al.,
J. Am. Chem. Soc.
124
,
5550
(
2002
).
5.
Z. J.
Donhauser
 et al.,
Science
292
,
2303
(
2001
).
6.
P. A.
Lewis
,
C. E.
Inman
,
Y.
Yao
,
J. M.
Tour
,
J. E.
Hutchison
, and
P. S.
Weiss
,
J. Am. Chem. Soc.
126
,
12214
(
2004
).
7.
J.
Chen
,
M. A.
Reed
,
A. M.
Rawlett
, and
J. M.
Tour
,
Science
286
,
1550
(
1990
).
8.
C.
Li
 et al.,
Appl. Phys. Lett.
82
,
645
(
2003
).
9.
D. J.
Wold
and
C. D.
Frisbie
,
J. Am. Chem. Soc.
123
,
5549
(
2001
).
10.
L. A.
Bumm
 et al.,
Science
271
,
1705
(
1996
).
11.
X. D.
Cui
 et al.,
Nanotechnology
13
,
5
(
2002
).
12.
13.
M. A.
Reed
,
C.
Zhou
,
C. J.
Muller
,
T. P.
Burgin
, and
J. M.
Tour
,
Science
278
,
252
(
1997
).
14.
I.
Amlani
,
A. M.
Rawlett
,
L. A.
Nagahara
, and
R. K.
Tsui
,
Appl. Phys. Lett.
80
,
2761
(
2002
).
15.
J. G.
Kushmerick
,
D. B.
Holt
,
J. C.
Yang
,
J.
Naciri
,
M. H.
Moore
, and
R.
Shashidhar
,
Phys. Rev. Lett.
89
,
086802
(
2002
).
17.
W.
Wang
,
T.
Lee
,
M.
Kamdar
,
M. A.
Reed
,
M. P.
Stewart
,
J.
Hwang
, and
J. M.
Tour
,
Superlattices Microstruct.
33
,
217
(
2003
).
18.
N.
Majumdar
 et al.,
J. Vac. Sci. Technol. B
23
,
1417
(
2005
).
19.
N.
Gergel
 et al.,
J. Vac. Sci. Technol. A
23
,
880
(
2005
).
20.
N.
Majumdar
,
N.
Gergel
,
G.
Pattanaik
,
G.
Zangari
,
Y.
Yao
,
J. M.
Tour
,
J. C.
Bean
, and
L. R.
Harriott
,
J. Electron. Mater.
35
,
140
(
2006
).
21.
N.
Gergel-Hackett
 et al.,
J. Vac. Sci. Technol. A
24
,
1243
(
2006
).
22.
J.
He
,
B.
Chen
,
A. K.
Flatt
,
J. J.
Stephenson
,
C. D.
Doyle
, and
J. M.
Tour
,
Nat. Mater.
5
,
63
(
2005
).
23.
H. B.
Akkerman
,
P. W. M.
Blom
,
D. M.
De Leeuw
, and
B.
De Boer
,
Nature (London)
441
,
69
(
2006
).
24.
D. L.
Pugmire
,
M. J.
Tarlov
,
R. D.
Van Zee
, and
J.
Naciri
,
Langmuir
19
,
3720
(
2003
).
25.
T.
Nakamura
,
H.
Kondoh
,
M.
Matsumoto
, and
H.
Nozoye
,
Langmuir
12
,
5977
(
1996
).
26.
J.
Lee
 et al.,
Nano Lett.
3
,
113
(
2003
).
28.
Modified low temperature organic effusion cell, model OME-40-Q2, United Mineral and Chemical Corporation representing the equipment of MBE-Komponenten Dr. Karl Eberl of Germany, 1100 Valley Brook Av, Lyndherst, NJ 07071.
29.
C. T.
Cai
 et al.,
J. Phys. Chem. B
108
,
2827
(
2004
).
30.
H.
Kondoh
,
C.
Kodama
,
H.
Sumida
, and
H.
Nozoye
,
J. Chem. Phys.
111
,
1175
(
1999
).
31.
G. E.
Poirier
,
Langmuir
15
,
1167
(
1999
).
32.
J. J.
Stapleton
,
P.
Harder
,
T. A.
Danieal
,
M. D.
Reinard
,
Y.
Yao
,
D. W.
Price
,
J. M.
Tour
, and
D. L.
Allara
,
Langmuir
19
,
8245
(
2003
).
You do not currently have access to this content.