High quality epitaxial MgO thin films have been grown on Si (001) wafers by molecular beam epitaxy using SrTiO3 (STO) as a buffer layer. The STO buffer layer reduces both the large lattice mismatch of 23% and the large thermal mismatch of 520% between MgO and Si. X-ray diffraction (XRD) measurements indicate that the MgO film grown on the STO buffered Si is epitaxial with MgO (002)Si (004) and MgO [110]Si [002]. The full width at half maximum (FWHM) of MgO (002) rocking curve width Δω is 0.30° (out-of-plane), and the FWHM of MgO (202) ϕ angle scan width Δϕ is 0.34° (in-plane) for a 155nm thick film. Strain relaxation and growth mechanisms of the MgO film on Si were studied by in situ reflection high-energy electron diffraction (RHEED) analysis in combination with XRD and atomic force microscopy. The results indicate that the MgO first forms a pseudomorphic wetting layer and subsequently undergoes a Stranski-Krastanov transition to form three-dimensional coherent islands to relieve misfit strain. A decrease in the width of the RHEED spots with increasing MgO thickness is observed that is attributed to reduction of coherency strain. A smooth surface redevelops once MgO growth continues, which is attributed to island coalescence.

1.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
2.
D. K.
Fork
,
F. A.
Ponce
,
J. C.
Tramontana
, and
T. H.
Geballe
,
Appl. Phys. Lett.
58
,
2294
(
1991
).
3.
F. J.
Walker
and
R. A.
McKee
,
Nanostruct. Mater.
7
,
221
(
1996
).
4.
T. L.
Chen
,
X. M.
Li
,
W. D.
Yu
, and
X.
Zhang
,
Appl. Phys. A: Mater. Sci. Process.
81
,
657
(
2005
).
5.
F.
Niu
,
B. H.
Hoerman
, and
B. W.
Wessels
,
J. Vac. Sci. Technol. B
18
,
2146
(
2000
).
6.
S. Y.
Lee
,
S. H.
Lee
,
E. J.
Nah
,
S. S.
Lee
, and
Y. J.
Kim
,
J. Cryst. Growth
236
,
635
(
2002
).
7.
F.
Niu
,
A.
Meier
, and
B. W.
Wessels
,
J. Electroceram.
13
,
89
(
2003
).
8.
P. A.
Stampe
and
R. J.
Kennedy
,
J. Cryst. Growth
191
,
478
(
1998
).
9.
R. J.
Kennedy
and
P. A.
Stampe
,
J. Cryst. Growth
207
,
200
(
1999
).
10.
G.
Chern
,
Surf. Sci.
387
,
183
(
1997
).
11.
Y. R.
Li
,
Z.
Liang
,
Y.
Zhang
,
J.
Zhu
,
S. W.
Jiang
, and
X. H.
Wei
,
Thin Solid Films
489
,
245
(
2005
).
12.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
13.
J.
Lettieri
,
J. H.
Haeni
, and
D. G.
Schlom
,
J. Vac. Sci. Technol. A
20
,
1332
(
2002
).
14.
Z.
Yu
 et al,
Thin Solid Films
462–463
,
51
(
2004
).
15.
A.
Ichimiya
and
P. I.
Cohen
,
Reflection High-Energy Electron Diffraction
(
Cambridge University Press
,
Cambridge
,
2004
).
16.
S.
Andrieu
and
P.
Frechard
,
Surf. Sci.
360
,
289
(
1996
).
17.
D.
Litvinov
,
T.
O’Donnell
, and
R.
Clarke
,
J. Appl. Phys.
85
,
2151
(
1999
).
18.
D.
Litvinov
and
R.
Clarke
,
Appl. Phys. Lett.
74
,
955
(
1999
).
19.
D.
Litvinov
,
J. H.
Kent
,
S.
Khizroev
,
H.
Gong
, and
D.
Lambeth
,
J. Appl. Phys.
87
,
5693
(
2000
).
20.
R. T.
Brewer
,
H. A.
Atwater
,
J. R.
Groves
, and
P. N.
Arendt
,
J. Appl. Phys.
93
,
205
(
2003
).
21.
J. W.
Hartman
,
R. T.
Brewer
, and
H.
Atwater
,
J. Appl. Phys.
92
,
5133
(
2002
).
22.
M. J.
Hordon
and
B. L.
Averbach
,
Acta Metall.
9
,
237
(
1961
).
23.
kSA400 manual.
24.
P.
Hirsch
,
A.
Howie
,
R.
Nicholson
,
D. W.
Pashley
, and
M. J.
Whelan
,
Electron Microscopy of Thin Crystals
, 2nd ed. (
Krieger Publishing Co.
,
FL
,
1977
), p.
105
.
25.
J. W.
Edington
,
Electron Diffraction in the Electron Microscope
,
Monographs in Practical Electron Microscopy in Materials Science Monograph Two
(
Philips Technical Library
,
1977
), p.
70
.
26.
V.
Betz
,
B.
Holzapfel
, and
L.
Schultz
,
Thin Solid Films
301
,
28
(
1997
).
27.
M. H.
Yang
and
C. P.
Flynn
,
Phys. Rev. B
41
,
8500
(
1990
).
28.
J. M.
Van Hove
,
P.
Pukite
, and
P. I.
Cohen
,
J. Vac. Sci. Technol. A
1
,
609
(
1983
).
29.
F. S.
Aguirre-Tostado
 et al,
J. Vac. Sci. Technol. A
22
,
1356
(
2004
).
30.
F. S.
Aguirre-Tostado
 et al,
Phys. Rev. B
70
,
201403
(R) (
2004
).
You do not currently have access to this content.