To address the future use of alloying elements for Cu interconnect applications in integrated circuits, first, available bulk experimental data such as residual resistivity per at. % solute and binary phase diagrams are used to arrive at a set of 24 potential elements. Next, experimental results in thin films and lines allow the authors to arrive at a smaller set that includes ten elements, namely, Pd, Au, Al, Ag, Nb, Cr, B, Ti, In, and Mn, with higher priority and six, namely, Zn, V, C, Mg, P, and Sn with lower priority for further studies. These additional studies are needed before a strong case for or against alloying additions to Cu can be made. The available thin film and line data are summarized in a series of tables that should prove useful for the readers. In particular, the thin film data allow the authors to obtain an effective average residual resistivity (EARR) per at. % solute that combines the effects of impurity scattering, second phase precipitates, and grain size refinement resulting from solute additions.

1.
D.
Edelstein
 et al,
Tech. Dig. - Int. Electron Devices Meet.
1997
,
773
.
2.
C.-K.
Hu
and
J. M. E.
Harper
,
Mater. Chem. Phys.
52
,
5
(
1998
).
3.
R.
Rosenberg
,
D. C.
Edelstein
,
C.-K.
Hu
, and
K. P.
Rodbell
,
Annu. Rev. Mater. Sci.
30
,
229
(
2000
).
4.
D.
Edelstein
 et al,
International Technology Conference 50-IITC 2005
2001
, (unpublished), pp.
9
.
5.
P.
Andricacos
,
Interfaces
7
,
23
(
1998
);
P. C.
Andricacos
,
C.
Uzoh
,
J.
Dukovic
,
J.
Horkans
, and
H.
Deligiani
,
IBM J. Res. Dev.
42
,
567
(
1998
).
6.
H. K.
Tang
and
K. P.
Rodbell
,
MRS Bull.
28
,
111
(
2003
).
7.

Th, U, and Po are all part of a decay chain that emits alpha particles, and, in particular, Po is a common contaminant in commercial Sn and Ag sources. Thus, care must be taken that Po is not inadvertently incorporated as a contaminant through other elements.

8.
Binary Alloy Phase Diagrams
, edited by
T. B.
Massalski
,
H.
Okamoto
,
P. R.
Subramanian
, and
L.
Kcprzak
(
ASM International
,
Metals Park, OH
,
1990
).
9.
F. J.
Blatt
,
Physics of Electronic Conduction in Solids
(
McGraw-Hill Book Company
,
New York
,
1968
), p.
199
.
10.
ASM Engineering Materials Handbook
, edited by
Michael
Bauccio
(
ASM International
,
Metals Park, OH
,
1994
), p.
528
.
11.
K.
Barmak
,
G. A.
Lucadamo
,
C.
Cabral
, Jr.
,
C.
Lavoie
, and
J. M. E.
Harper
,
J. Appl. Phys.
87
,
2204
(
2000
).
12.
K.
Barmak
,
A.
Gungor
,
C.
Cabral
, Jr.
, and
J. M. E.
Harper
,
J. Appl. Phys.
94
,
1605
(
2003
).
13.
A.
Gungor
,
K.
Barmak
,
A. D.
Rollett
,
C.
Cabral
, Jr.
, and
J. M. E.
Harper
,
J. Vac. Sci. Technol. B
20
,
2314
(
2002
).
14.
K.
Barmak
,
A.
Gungor
,
A. D.
Rollett
,
C.
Cabral
, Jr.
, and
J. M. E.
Harper
,
Mater. Sci. Semicond. Process.
6
,
175
(
2003
).
15.
K.
Barmak
,
C.
Cabral
, Jr.
, and
J. M. E.
Harper
,
J. Mater. Res.
20
,
3391
(
2005
).
16.
K.
Barmak
,
A.
Gungor
,
C.
Cabral
, Jr.
,
J. M. E.
Harper
, and
K. P.
Rodbell
(unpublished).
17.
C. J.
Liu
,
J. S.
Chen
, and
Y. K.
Lin
,
J. Electrochem. Soc.
151
,
G18
(
2004
).
18.
C. W.
Park
and
R. W.
Vook
,
Thin Solid Films
226
,
238
(
1993
).
19.
S.-L.
Zhang
,
J. M. E.
Harper
,
C.
Cabral
, Jr.
, and
F. M.
d’Heurle
,
Thin Solid Films
401
,
298
(
2001
).
20.
P. J.
Ding
,
W. A.
Lanford
,
S.
Hymes
, and
S. P.
Murarka
,
J. Appl. Phys.
75
,
3627
(
1994
).
21.
Y. K.
Ko
,
J. H.
Jang
,
S.
Lee
,
H. J.
Yang
,
W. H.
Lee
,
J. G.
Lee
, and
P. J.
Reucroft
,
J. Mater. Sci.: Mater. Electron.
14
,
103
(
2003
).
22.
S.
Hymes
,
K. S.
Kumar
,
S. P.
Murarka
,
W.
Wang
, and
W. A.
Langford
,
Mater. Res. Soc. Symp. Proc.
427
,
193
(
1996
).
23.
S.-L.
Zhang
,
J. M. E.
Harper
, and
F. M.
d’Heurle
,
J. Electron. Mater.
30
,
L1
(
2001
).
24.
P. J.
Ding
,
W. A.
Lanford
,
S.
Hymes
, and
S. P.
Murarka
,
Appl. Phys. Lett.
64
,
2897
(
1994
).
25.
T.
Takewaki
,
R.
Kaihara
,
T.
Ohmi
, and
T.
Nitta
,
Tech. Dig. - Int. Electron Devices Meet.
1995
,
253
.
26.
K.
Hoshino
,
H.
Yagi
, and
H.
Tsuchikawa
,
Proceedings of VMIC Conference
(
IEEE
,
New York
,
1990
), p.
357
.
27.
K. L.
Lee
,
C. K.
Hu
, and
K. N.
Tu
,
J. Appl. Phys.
78
,
4428
(
1995
).
28.
The International Technology Roadmap for Semiconductors (ITRS)
2004
update, http://www.itrs.net.
29.
E.
Lee
,
C.
Hutchinson
,
A.
Bhanap
,
N.
Truong
,
R.
Prater
,
M.
Pinter
, and
W.
Yi
, http://www.vertilog.com, V-EMT 1:16, July
2004
.
30.
A.
Isobayashi
,
Y.
Enomoto
,
H.
Yamada
,
S.
Takahashi
, and
S.
Kadomura
,
Tech. Dig. - Int. Electron Devices Meet.
2004
,
953
.
31.
J. M. E.
Harper
and
K. P.
Rodbell
,
J. Vac. Sci. Technol. B
15
,
763
(
1997
).
32.
J. M. E.
Harper
,
J.
Gupta
,
D. A.
Smith
,
J. W.
Chang
,
K. L.
Holloway
,
C.
Cabral
, Jr.
,
D. P.
Tracy
, and
D. B.
Knorr
,
Appl. Phys. Lett.
65
,
177
(
1994
).
33.
C. P.
Wang
,
S.
Lopatin
,
A.
Marathe
,
M.
Buynoski
,
R.
Huang
, and
D.
Erb
,
Proc. IITC
2001
,
86
.
34.
J.
Burton
and
E. S.
Machlin
,
Phys. Rev. Lett.
37
,
1433
(
1976
).
They state that if the solidus and liquidus have negative(positive) slopes, surface segregation should(should not) occur.
35.
H.
Itow
,
Y.
Nakasaki
,
G.
Minamihaba
,
K.
Suguro
, and
H.
Okano
,
Appl. Phys. Lett.
63
,
934
(
1993
).
36.
D. B.
Butrymowicz
,
J. R.
Manning
, and
M. E.
Read
,
International Copper Research Association Monograph V: The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems
(
National Bureau of Standards
,
Washington, D.C.
,
1977
);
D. B.
Butrymowicz
,
J. R.
Manning
, and
M. E.
Read
,
International Copper Research Association Monograph VIII: The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems
(
National Bureau of Standards
,
Washington, D.C.
,
1981
).
37.
K.
Hoshino
,
Y.
Iijima
, and
K.-I.
Hirano
,
Metall. Trans. A
8A
,
469
(
1977
).
38.
C.-K.
Hu
,
B.
Luther
,
F. B.
Kaufman
,
J.
Hummel
,
C.
Uzoh
, and
D. J.
Pearson
,
Thin Solid Films
262
,
84
(
1995
).
39.
C.-K.
Hu
,
K. Y.
Lee
,
C.
Cabral
, Jr.
,
E. G.
Colgan
, and
C.
Stanis
,
J. Electrochem. Soc.
143
,
1001
(
1996
).
40.
C.-K.
Hu
,
K. L.
Lee
,
L.
Gignac
, and
R.
Carruthers
,
Thin Solid Films
308–309
,
443
(
1997
).
41.
C.-K.
Hu
,
R.
Rosenberg
, and
K. L.
Lee
,
Appl. Phys. Lett.
74
,
2945
(
1999
).
42.
C.-K.
Hu
,
R.
Rosenberg
,
W.
Klaasen
, and
A. K.
Stamper
,
Proceedings of Advanced Metallization Conference (AMC)
, edited by
D.
Edelstein
,
G.
Dixit
, and
Y.
Yasuda
, and
T.
Ohba
, Vol.
16
,
2000
, pp.
691
697
.
43.
C.-K.
Hu
,
L.
Gignac
,
S. G.
Malhotra
, and
R.
Rosenberg
,
Appl. Phys. Lett.
78
,
904
(
2001
).
44.
C.-K.
Hu
 et al,
Appl. Phys. Lett.
81
,
1782
(
2002
).
45.
E.
Liniger
,
L.
Gignac
,
C.-K.
Hu
, and
S.
Kaldor
,
J. Appl. Phys.
92
,
1803
(
2002
).
46.
L.
Arnaud
,
R.
Berger
, and
G.
Reimbold
,
J. Appl. Phys.
93
,
192
(
2003
).
47.
K.
Barmak
,
C.
Cabral
, Jr.
, and
J. M. E.
Harper
(unpublished).
48.
M. D.
Thouless
,
J.
Gupta
, and
J. M. E.
Harper
,
J. Mater. Res.
8
,
1845
(
1993
).
49.
F. M.
d’Heurle
and
A.
Gangulee
,
Thin Solid Films
25
,
531
(
1975
).
50.
T.
Usui
 et al,
Proceedings of IEEE IITC
,
2005
p.
188
.
You do not currently have access to this content.