ZnO nanorod arrays fabricated on ZnO buffer layers on Si wafers were grown using a low-temperature solution method and were characterized by various techniques. Buffer layers were prepared using metal organic chemical vapor deposition and a sputter-oxidation method. Aligned ZnO nanorods were deposited at 90°C on the substrates by a hydrothermal treatment using a zinc salt and aqueous ammonia solution. The ZnO nanorod arrays were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The as-grown ZnO nanorod arrays exhibited broad deep-level emission centered at 564nm. The intensity of the deep-level emission decreased and band edge emission centered at 379nm appeared after air annealing. Samples annealed in hydrogen showed only band edge emission.

1.
Z. L.
Wang
,
J. Phys.: Condens. Matter
16
,
R829
(
2004
).
2.
R.
Konenkamp
,
R. C.
Word
, and
C.
Schlegel
,
Appl. Phys. Lett.
85
,
6004
(
2004
).
3.
J.
Goldberger
,
D. J.
Sirbuly
,
M.
Law
, and
P.
Yang
,
J. Phys. Chem. B
109
,
9
(
2005
).
4.
M. H.
Huang
 et al.,
Science
292
,
1897
(
2001
).
5.
Q.
Wan
,
Q. H.
Li
,
Y. J.
Chen
,
T. H.
Wang
,
X. L.
He
,
J. P.
Li
, and
C. L.
Lin
,
Appl. Phys. Lett.
84
,
3654
(
2004
).
6.
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P.
Yang
,
Nat. Mater.
4
,
455
(
2005
).
7.
S. C.
Lyu
,
Y. Z.
Cheol
,
J.
Lee
,
H.
Ruh
, and
H. J.
Lee
,
Chem. Mater.
15
,
3294
(
2003
).
8.
J.-J.
Wu
and
S.-C.
Liu
,
Adv. Mater. (Weinheim, Ger.)
14
,
215
(
2002
).
9.
Y.
Sun
,
G. M.
Fuge
, and
M. N. R.
Ashfold
,
Chem. Phys. Lett.
396
,
21
(
2004
).
10.
B.
Cheng
and
E. T.
Samulski
,
Chem. Commun. (Cambridge)
2004
,
986
.
11.
B.
Liu
and
H. C.
Zeng
,
Langmuir
20
,
4196
(
2004
).
12.
L.
Vayssieres
,
K.
Keis
,
S.-E.
Lindquist
, and
A.
Hagfeldt
,
J. Phys. Chem. B
105
,
3350
(
2001
).
13.
Q.
Li
,
V.
Kumar
,
Y.
Li
,
H.
Zhang
,
T. J.
Marks
, and
R. P. H.
Chang
,
Chem. Mater.
17
,
1001
(
2005
).
14.
L. E.
Greene
,
M.
Law
,
D. H.
Tan
,
M.
Montano
,
J.
Goldberger
,
G.
Somorjai
, and
P.
Yang
,
Nano Lett.
5
,
1231
(
2005
).
15.
Y.
Tak
and
K.
Yong
,
J. Phys. Chem. B
109
,
19263
(
2005
).
16.
Z. B.
Fang
,
Z. J.
Yan
,
Y. S.
Tan
,
X. Q.
Liu
, and
Y. Y.
Wang
,
Appl. Surf. Sci.
241
,
303
(
2005
).
17.
D.
Song
,
P.
Windenborg
,
W.
Chin
, and
A.
Aberle
,
Sol. Energy Mater. Sol. Cells
73
,
269
(
2002
).
18.
C.-S.
Hsiao
,
C.-H.
Peng
, and
S.-Y.
Chen
,
J. Vac. Sci. Technol. B
24
,
288
(
2006
).
19.
H.-Y.
Lu
,
S. Y.
Chu
, and
S.-H.
Cheng
,
J. Cryst. Growth
274
,
506
(
2005
).
20.
M.
Chen
,
X.
Wang
,
Y. H.
Yu
,
Z. L.
Pei
,
X. D.
Bai
,
C.
Sun
,
R. F.
Huang
, and
L. S.
Wen
,
Appl. Surf. Sci.
158
,
134
(
2000
).
21.
X.-J.
Yang
,
X.-Y.
Miao
,
X.-L.
Xu
,
C.-M.
Xu
,
J.
Xu
, and
H.-T.
Liu
,
Opt. Mater. (Amsterdam, Neth.)
27
,
1602
(
2005
).
22.
B.
Cao
,
W.
Cai
,
G.
Duan
,
Y.
Li
,
Q.
Zhao
, and
D.
Yu
,
Nanotechnology
16
,
2567
(
2005
).
23.
X.
Wang
,
Q.
Li
,
Z.
Liu
,
J.
Zhang
,
Z.
Liu
, and
R.
Wang
,
Appl. Phys. Lett.
84
,
4941
(
2004
).
24.
S.
Tripathy
,
S. J.
Chua
,
P.
Chen
, and
Z. L.
Miao
,
J. Appl. Phys.
92
,
3503
(
2002
).
25.
G. J.
Exarhos
and
S. K.
Sharma
,
Thin Solid Films
270
,
27
(
1995
).
26.
M.
Liu
,
A. H.
Kitai
, and
P.
Mascher
,
J. Lumin.
54
,
35
(
1992
).
27.
X. L.
Wu
,
G. G.
Siu
,
C. L.
Fu
, and
H. C.
Ong
,
Appl. Phys. Lett.
78
,
2285
(
2001
).
28.
L. E.
Greene
,
M.
Law
,
J.
Goldberger
,
F.
Kim
,
J. C.
Johnson
,
Y.
Zhang
,
R. J.
Saykally
, and
P.
Yang
,
Angew. Chem., Int. Ed.
42
,
3031
(
2003
).
29.
R. B. M.
Cross
,
M. M.
De Souza
, and
E. M.
Sankara Narayanan
,
Nanotechnology
16
,
2188
(
2005
).
You do not currently have access to this content.