A high-density crystalline ZnO nanoneedles film (5μm thick) has been fabricated using a microwave plasma enhanced chemical vapor deposition apparatus. The nanostructures and properties were examined by scanning electron microscopy, high resolution transmission electron microscopy, and x-ray diffraction. The results indicated that the ZnO nanoneedle possesses a wurtzite structure (hexagonal) with lattice constants of a0=3.24Å and C0=5.19Å, and an average length up to 5μm, while the diameters of the tip and the pillar of the nanoneedle are of 30 and 300nm, respectively. The film density reaches 1011cm2. The room-temperature photoluminescence spectrum reveals a strong and sharp near-UV emission band at 386nm and exhibits a very weak deep-level emission, which implies the high-purity nature of the ZnO nanoneedles film. The high specific surface of ZnO nanoneedles film has potential applications in chemical sensors while the excitation property has optoelectronic and photochemical applications.

1.
S.
Ijima
,
Nature (London)
354
,
56
(
1991
).
2.
W. Q.
Han
,
S. S.
Fan
,
Q. Q.
Li
, and
Y. D.
Hu
,
Science
277
,
1287
(
1997
)
3.
Y.
Cui
,
Q. Q.
Wei
,
H. K.
Park
, and
C. M.
Lieber
,
Science
293
,
1289
(
2001
).
4.
J. F.
Wang
,
M. S.
Gudiksen
,
X. F.
Duan
,
Y.
Cui
, and
C. M.
Lieber
,
Science
293
,
1455
(
2001
).
5.
M.
He
,
I.
Minus
,
P.
Zhou
,
S. N.
Mohammed
, and
J. B.
Halpern
,
Appl. Phys. Lett.
77
,
3731
(
2000
).
6.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang Michael
,
Science
292
,
1897
(
2001
).
7.
C. H.
Liang
,
L. C.
Chen
,
J. S.
Hwang
,
K. H.
Chen
,
Y. T.
Hung
, and
Y. F.
Chen
,
Appl. Phys. Lett.
81
,
22
(
2002
)
9.
H. M.
Lin
,
S. J.
Tzeng
,
P. J.
Hsiau
, and
W. L.
Tsai
,
Nanostruct. Mater.
10
,
465
(
1998
).
10.
S. H.
Jo
,
J. Y.
Lao
,
Z. F.
Ren
,
R. A.
Farrer
,
T.
Baldacchini
, and
J. T.
Fourkas
,
Appl. Phys. Lett.
83
,
4821
(
2003
).
11.
C. X.
Xu
,
X. W.
Sun
, and
B. J.
Chen
,
Appl. Phys. Lett.
84
,
1540
(
2004
).
12.
X. H.
Zhang
,
S. Y.
Xie
,
Z. Y.
Jiang
,
X.
Zhang
,
Z. Q.
Tian
,
Z. X.
Xie
,
R. B.
Huang
, and
L. S.
Zheng
,
J. Phys. Chem. B
107
,
10114
(
2003
).
13.
Z. L.
Wang
,
J. Phys.: Condens. Matter
16
,
R829
(
2004
)
14.
J. B.
Baxter
,
F.
Wu
, and
E. S.
Aydil
,
Appl. Phys. Lett.
83
,
3797
(
2003
).
15.
Y.
Li
,
G. W.
Meng
,
L. D.
Zhang
, and
F.
Phillipp
,
Appl. Phys. Lett.
76
,
2011
(
2000
)
16.
J. J.
Wu
,
S. C.
Liu
,
C. T.
Wu
,
K. H.
Chen
, and
L. C.
Chen
,
Appl. Phys. Lett.
81
,
1312
(
2002
).
17.
Z. W.
Pan
,
Z. R.
Dai
, and
Z. L.
Wang
,
Science
291
,
1947
(
2001
).
18.
P. X.
Gao
and
Z. L.
Wang
,
Appl. Phys. Lett.
84
,
2883
(
2004
).
19.
Y. C.
Kong
,
D. P.
Yu
,
B.
Zhang
,
W.
Fang
, and
S. Q.
Feng
,
Appl. Phys. Lett.
78
,
407
(
2001
).
20.
K.
Govender
,
D. S.
Boyle
,
P. O.
Brien
,
D.
Binks
,
D.
West
, and
D.
Coleman
,
Adv. Mater. (Weinheim, Ger.)
14
,
1221
(
2002
).
21.
B. P.
Zhang
,
N. T.
Binh
,
Y.
Segawa
,
K.
Wakatsuki
, and
N.
Usami
,
Appl. Phys. Lett.
83
,
1635
(
2003
).
22.
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
,
J. Appl. Phys.
79
,
7983
(
1996
).
23.
M. H.
Huang
,
Y.
Wu
,
H.
Feick
,
N.
Tran
,
E.
Weber
, and
P. D.
Yang
,
Adv. Mater. (Weinheim, Ger.)
13
,
113
(
2001
).
You do not currently have access to this content.