We have fabricated self-organized 30-nm-wide Cu lines on glass and Si(100) substrates by Ar beam etching the Cu/substrate interfaces. We deposited thin Cu layers on the substrates and etched the deposited layer by a neutralized Ar ion beam at a grazing angle of incidence. At the stage when almost all Cu is removed by etching, we have observed Cu lines on the substrate. The lines orientation is entirely controllable through the experiment geometry and the lines are basically similar on glass and Si substrates. By atomistic Monte Carlo simulations, we have demonstrated that the Cu lines result from the self-organized morphologies that develop on Cu surfaces during sputter etching. To better understand ways to control the process we have investigated, by simulations, the line width as a function of the removed depth, surface diffusivity, and Ar beam flux. We have concluded that the sputter etch technique offers a unique opportunity to fabricate controlled arrays of Cu lines on substrates.

1.
C. J.
Murphy
,
T. K.
Sau
,
A.
Gole
, and
C. J.
Orendorff
,
MRS Bull.
30
,
349
(
2005
).
2.
Y.
Cui
,
Q.
Wei
,
H.
Park
, and
C. M.
Lieber
,
Science
293
,
1289
(
2001
).
3.
D.
Whang
,
S.
Jin
,
Y.
Wu
, and
C. M.
Lieber
,
Nano Lett.
3
,
1255
(
2003
).
4.
S.
Ciraci
,
A.
Buldum
, and
I. P.
Batra
,
J. Phys.: Condens. Matter
13
,
R573
(
2001
).
5.
Y.
Kim
and
C. M.
Lieber
,
Science
257
,
375
(
1992
).
6.
A.
Bezryadin
,
C. N.
Lau
, and
M.
Tinkham
,
Nature (London)
404
,
971
(
2000
).
7.
N. A.
Melosh
,
A.
Boukai
,
F.
Diana
,
B.
Gerardot
,
A.
Badolato
,
P. M.
Petroff
, and
J. R.
Heath
,
Science
300
,
112
(
2003
).
8.
G.
Carter
,
J. Phys. D
34
,
R1
(
2001
).
9.
R. M.
Bradley
and
J. M. E.
Harper
,
J. Vac. Sci. Technol. A
6
,
2390
(
1988
).
10.
R.
Cuerno
and
A.-L.
Barabási
,
Phys. Rev. Lett.
74
,
4746
(
1995
).
11.
S.
Rusponi
,
G.
Costantini
,
C.
Boragno
, and
U.
Valbusa
,
Phys. Rev. Lett.
81
,
2735
(
1998
).
12.
G.
Carter
,
Phys. Rev. B
59
,
1669
(
1999
).
13.
R.
Park
,
B.
Kahng
,
H.
Jeong
, and
A.-L.
Barabási
,
Phys. Rev. Lett.
83
,
3486
(
1999
).
14.
J.
Erlebacher
,
M. J.
Aziz
,
E.
Chason
,
M. B.
Sinclair
, and
J. A.
Floro
,
J. Vac. Sci. Technol. A
18
,
115
(
2000
).
15.
A. K.
Hartmann
,
R.
Kree
,
U.
Geyer
, and
M.
Kölbel
,
Phys. Rev. B
65
,
193403
(
2002
).
16.
M.
Stepanova
,
S. K.
Dew
, and
I. P.
Soshnikov
,
Phys. Rev. B
66
,
125407
(
2002
).
17.
U.
Valbusa
,
C.
Boragno
, and
F.
Buatier de Mongeot
,
J. Phys.: Condens. Matter
14
,
8153
(
2002
).
18.
M.
Stepanova
and
S. K.
Dew
,
Appl. Phys. Lett.
84
,
1374
(
2004
).
19.
P.
Karmakar
and
D.
Ghose
,
Surf. Sci.
554
,
L101
(
2004
).
20.
M.
Stepanova
,
S. K.
Dew
, and
I. P.
Soshnikov
,
Appl. Phys. Lett.
86
,
073112
(
2005
).
21.
M.
Stepanova
,
S. K.
Dew
, and
D. S.
Karpuzov
,
J. Appl. Phys.
97
,
083536
(
2005
).
22.
Y.
Yamamura
and
H.
Tawara
,
At. Data Nucl. Data Tables
62
,
150
(
1996
).
23.
M.
Stepanova
and
S. K.
Dew
,
J. Appl. Phys.
92
,
1699
(
2002
).
24.
We derive the geometry parameters from the SRIM simulation ⟨http://www.srim.org/
25.
H. C.
Kang
and
W. H.
Weinberg
,
Chem. Rev. (Washington, D.C.)
95
,
667
(
1995
).
26.
L. J.
Friedrich
,
D. S.
Gardner
,
S. K.
Dew
,
M. J.
Brett
, and
T.
Smy
,
J. Vac. Sci. Technol. B
15
,
1780
(
1997
).
27.
M.
Giesen
,
Prog. Surf. Sci.
68
,
1
(
2001
).
28.
M.
Siegert
and
M.
Plischke
,
Phys. Rev. E
50
,
917
(
1994
).
29.

The ripple width λ is defined as twice the position of the first minimum of the height-height correlation function C(r)=Σ[h(i)h¯][h(i+r)h¯] taken in the direction perpendicular to the ripples.

You do not currently have access to this content.