The transition from dot to ripple formation during erosion sputtering was studied as a function of the angle of incidence of the bombarding ions. For GaSb as target material we found that dot structures are obtained for angles smaller than 10° with respect to the surface normal. We also observed an influence of impurities on the pattern formation. Small amounts of impurities serve as nucleation centers for the formation of differently shaped nanostructures. In addition, larger fragments of GaSb on the surface influence the pattern formation qualitatively; the fragment is sputtered and the sputtered material redeposited in the vicinity assists the generation of ordered dot structures. With the use of low-energy electron diffraction, we looked at the crystallographic surface properties of the dots. Dots produced with a small fluence (3×1017cm2) could be recrystallized by moderate annealing. Higher fluences, however, cause an irreversible amorphization.

1.
M.
Navez
,
C.
Saella
, and
D.
Chaperot
,
C. R. Acad. Sci.
254
,
240
(
1962
).
2.
S.
Facsko
,
T.
Dekorsy
,
C.
Koerdt
,
C.
Trappe
,
H.
Kurz
,
A.
Vogt
, and
H. L.
Hartnagel
,
Science
285
,
1551
(
1999
).
3.
F.
Frost
,
A.
Schindler
, and
F.
Bigl
,
Phys. Rev. Lett.
85
,
4116
(
2000
).
4.

The fluence is the ion current in elementary charge per second times the bombarding time in seconds divided by the exposed area in cm2.

5.
S.
Facsko
,
H.
Kurz
, and
T.
Dekorsy
,
Phys. Rev. B
63
,
165329
(
2001
).
6.
F.
Frost
,
B.
Ziberi
,
T.
Höche
, and
B.
Rauschenbach
,
Nucl. Instrum. Methods Phys. Res. B
216
,
9
(
2004
).
7.
F.
Frost
and
B.
Rauschenbach
,
Appl. Phys. A: Mater. Sci. Process.
77
,
1
(
2003
).
8.
R.
Bradley
and
J.
Harper
,
J. Vac. Sci. Technol. A
6
,
2390
(
1988
).
9.
P.
Sigmund
,
Phys. Rev.
184
,
383
(
1969
).
10.
R.
Cuerno
and
A.-L.
Barabasi
,
Phys. Rev. Lett.
74
,
4746
(
1995
).
11.
Y.
Kuramoto
and
T.
Tsuzuki
,
Prog. Theor. Phys.
55
,
356
(
1977
).
12.
G.
Sivashinsky
,
Acta Astron.
6
,
569
(
1979
).
13.
M.
Makeev
and
A.-L.
Barabasi
,
Appl. Phys. Lett.
71
,
2800
(
1997
).
14.
B.
Kahng
,
H.
Jeong
, and
A.-L.
Barabasi
,
Appl. Phys. Lett.
78
,
805
(
2001
).
15.
S.
Facsko
,
T.
Bobek
,
A.
Stahl
,
H.
Kurz
, and
T.
Dekorsy
,
Phys. Rev. B
69
,
153412
(
2004
).
16.
M.
Paniconi
and
K.
Elder
,
Phys. Rev. E
56
,
2713
(
1997
).
17.
S.
Vogel
and
S.
Linz
,
Phys. Rev. B
72
,
035416
(
2005
).
18.
S.
Vogel
and
S. J.
Linz
(unpublished).
19.
R.
Cuerno
(private communication).
20.
T.
Bobek
(private communication).
21.
M. A.
Makeev
,
R.
Cuerno
, and
A.-L.
Barabasi
,
Nucl. Instrum. Methods Phys. Res. B
197
,
185
(
2002
).
22.
S.
Rossnagel
and
R.
Robinson
,
J. Vac. Sci. Technol.
20
,
195
(
1982
).
23.
Y.
Homma
,
J. Vac. Sci. Technol. A
5
,
321
(
1987
).
24.
S.
Rossnagel
and
R.
Robinson
,
J. Vac. Sci. Technol.
20
,
336
(
1982
).
25.
I. H.
Wilson
,
J.
Belson
, and
O.
Auciello
in
Ion Bombardment Modification of Surfaces
, edited by
O.
Auciello
and
R.
Kelly
(
Elsevier
,
New York
,
1984
).
26.
S.
Facsko
,
T.
Bobek
,
H.
Kurz
,
T.
Dekorsy
,
S.
Kyrsta
, and
R.
Cremer
,
Appl. Phys. Lett.
80
,
130
(
2002
).
27.
S.
Facsko
,
T.
Bobek
,
T.
Dekorsy
, and
H.
Kurz
,
Phys. Status Solidi B
224
,
537
(
2001
).
28.
Selbstorganisation von periodischen Nanostrukturen und Quantenpunkten durch Ionensputtern
,
T.
Bobek
(Shaker, Aachen,
2005
).
You do not currently have access to this content.