We studied the effect of implanted fluorine on B-doped silicon formed by Si preamorphization, solid phase epitaxy (SPE) regrowth and post-SPE thermal treatments. We showed that the fluorine is an efficient diffusion inhibitor for boron, revealing the crucial importance of F implementation in the future generation devices. In samples doped with B we observed an anomalous F accumulation at the dopant implantation peak. Since the physical mechanisms driving these phenomena are not yet well understood, we investigated the effect of the presence of B and/or As on the F incorporation during the SPE process at 580°C. By using As coimplantation (thus modifying the SPE rate) we demonstrated that the above mentioned increased F incorporation is due to a kinetic effect, related to the SPE rate modification by doping, while a F–B chemical bonding is refused. These data shade new light upon the mechanism responsible for B diffusion reduction by F.

1.
E. C.
Jones
and
E.
Ishida
,
Mater. Sci. Eng., R.
24
,
1
(
1998
).
2.
International Technology Roadmap for semiconductors
(ITRS) ⟨http://public.itrs.net
3.
W. K.
Hofker
,
H. W.
Werner
,
D. P.
Oosthoek
, and
H. A. M.
de-Grefte
,
Appl. Phys.
2
,
165
(
1973
).
4.
H. A. W.
El Mubarek
,
J. M.
Bonar
,
G. D.
Dilliway
,
P.
Ashburn
,
M.
Karunaratne
,
F.
Willoughby
,
Y.
Wang
,
P. L. F.
Hemment
,
R.
Price
,
J.
Zhang
, and
P.
Ward
,
J. Appl. Phys.
96
,
4114
(
2004
).
5.
G.
Impellizzeri
,
J. H. R.
dos Santos
,
S.
Mirabella
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
84
,
1862
(
2004
).
6.
N. E. B.
Cowern
,
B.
Colombeau
,
J.
Benson
,
A. J.
Smith
,
W.
Lerch
,
S.
Paul
,
T.
Graf
,
F.
Cristiano
,
X.
Hebras
, and
D.
Bolze
,
Appl. Phys. Lett.
86
,
101905
(
2005
).
7.
S.
Mirabella
,
G.
Impellizzeri
,
E.
Bruno
,
L.
Romano
,
M. G.
Grimaldi
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
86
,
121905
(
2005
).
8.
G.
Impellizzeri
,
J. H. R.
dos Santos
,
S.
Mirabella
,
E.
Napolitani
,
A.
Carnera
, and
F.
Priolo
,
Nucl. Instrum. Methods Phys. Res. B
230
,
220
(
2005
).
9.
R. G.
Wilson
,
J. Appl. Phys.
54
,
6879
(
1983
).
10.
A.
Mokhberi
,
R.
Kasnavi
,
P. B.
Griffin
, and
J. D.
Plummer
,
Appl. Phys. Lett.
80
,
3530
(
2002
).
11.
D. F.
Downey
,
J. W.
Chow
,
E.
Ishida
, and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
1263
(
1998
).
12.
Y.-J.
Park
and
J.-J.
Kim
,
J. Appl. Phys.
85
,
803
(
1999
).
13.
A.
Claverie
,
L.
Laânab
,
C.
Bonafos
,
C.
Bergaud
,
A.
Martinez
, and
D.
Mathiot
,
Nucl. Instrum. Methods Phys. Res. B
96
,
202
(
1995
).
14.
K. S.
Jones
,
L. H.
Zhang
,
V.
Krishnamoorthy
,
M.
Law
,
D. S.
Simons
,
P.
Chi
,
R.
Rubin
, and
R. G.
Elliman
,
Appl. Phys. Lett.
68
,
2672
(
1996
).
15.
L.
Pelaz
,
L. A.
Marqués
, and
J.
Barbolla
,
J. Appl. Phys.
96
,
5947R
(
2004
), and references therein.
16.
G. L.
Olson
and
J. A.
Roth
,
Mater. Sci. Rep.
3
,
1
(
1988
), and references therein.
17.
I.
Suni
,
U.
Shreter
,
M-A.
Nicolet
, and
J. E.
Baker
,
J. Appl. Phys.
56
,
273
(
1984
).
18.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Matter
(
Pergamon
, New York,
1984
).
19.
I.
Suni
,
G.
Göltz
,
M. G.
Grimaldi
,
M-A.
Nicolet
, and
S. S.
Lau
,
Appl. Phys. Lett.
40
,
269
(
1982
).
You do not currently have access to this content.