Vertically aligned multiwalled carbon nanotube (MWCNT) arrays can mimic the hairs on a gecko’s foot and act as a dry adhesive. We demonstrate the van der Waals interactions originated dry adhesion between MWCNT array surfaces and various target surfaces over millimeter-sized contact areas. The adhesive strengths were measured over 10Ncm2 in the normal direction and about 8Ncm2 in the shear direction with glass surface. The adhesion strength over repeated cycles is limited by the relatively poor adhesion of MWCNTs to their growth substrate, which was improved significantly by adding molybdenum to the catalyst underlayer. We also measured the interfacial work of adhesion as a fundamental adhesion property at the interface. Our measured values of a few tens of mJm2, which falls in the range of typical van der Waals interactions energies, provide a direct proof of the van der Waals dry adhesion mechanism. Furthermore, in contrast to other dry adhesives, we show that MWCNT adhesives are electrically and thermally conducting, which makes them a unique interfacial material.

1.
R.
Ruibal
and
V.
Ernst
,
J. Morphol.
117
,
271
(
1965
).
2.
K.
Autumn
 et al.,
Nature (London)
405
,
681
(
2000
).
3.
K.
Autumn
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12252
(
2002
).
4.
K.
Autumn
and
A. M.
Peattie
,
Integr. Comp. Biol.
42
,
1081
(
2002
).
5.
D. J.
Irschick
 et al.,
Biol. J. Linn. Soc.
59
,
21
(
1996
).
6.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
,
Proc. R. Soc. London, Ser. A
324
,
301
(
1971
).
7.
J. N.
Israelachvili
,
Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems
(
Academic
,
New York
,
1992
).
8.
M.
Sitti
and
R. S.
Fearing
,
J. Adhes. Sci. Technol.
17
,
1055
(
2003
).
9.
D.
Campolo
,
S. D.
Jones
, and
R. S.
Fearing
,
IEEE NANO 2003
, San Francisco, 12–14 August 2003, (
IEEE
,
New York
,
2003
), Vol.
2
,pp.
856
859
.
10.
A. K.
Geim
 et al.,
Nat. Mater.
2
,
461
(
2003
).
11.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
12.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Annu. Rev. Mater. Res.
34
,
247
(
2004
).
13.
L.
Forro
and
C.
Schonenberger
,
Physical Properties of Multi-Wall Nanotubes
80
,
329
(
2001
).
14.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
Mceuen
,
Phys. Rev. Lett.
87
,
215502
(
2001
).
15.
M. R.
Falvo
 et al.,
Nature (London)
389
,
582
(
1997
).
16.
C. T.
Kingston
and
B.
Simard
,
Anal. Lett.
36
,
3119
(
2003
).
17.
M. F.
Yu
,
T.
Kowalewski
, and
R. S.
Ruoff
,
Phys. Rev. Lett.
86
,
87
(
2001
).
18.
B.
Yurdumakan
,
N. R.
Raravikar
,
P. M.
Ajayan
, and
A.
Dhinojwala
,
Chem. Commun. (Cambridge)
2005
,
3799
(
2005
).
19.
L.
Delzeit
 et al.,
J. Phys. Chem. B
106
,
5629
(
2002
).
20.
L.
Delzeit
 et al.,
Chem. Phys. Lett.
348
,
368
(
2001
).
21.
M. P.
Rossi
 et al.,
Nano Lett.
4
,
989
(
2004
).
22.
A.
Felten
,
C.
Bittencourt
,
J. J.
Pireaux
,
G.
Van Lien
, and
J. C.
Charlier
,
J. Appl. Phys.
98
,
074308
(
2005
).
23.
W.
Federle
,
K.
Rohrseitz
, and
B.
Holldobler
,
J. Exp. Biol.
203
,
505
(
2000
).
You do not currently have access to this content.