Thickness evaluation is a particular challenge encountered in the fabrication of nanosculptured thin films fabricated by glancing angle deposition (GLAD). In this article, we deduce equations which allow for accurate in situ thickness monitoring of GLAD thin films deposited onto substrates tilted with respect to the direction of incoming vapor. Universal equations are derived for the general case of Gaussian vapor flux distribution, off-axis sensors, variable substrate tilt, and nonunity sticking coefficient. The mathematical description leads to an incidence angle dependence of thickness and density, allowing for quantitative prediction of porosity in samples with different morphologies and thickness calibrations. In addition, variation of sticking probability with the incidence angle creates a nonmonotonic variation of the film thickness and porosity with the substrate tilt. We discuss the implications of the substrate type, sensor type, and source geometry in a precise quantitative determination of the thickness of thin films fabricated on tilted substrates. Our equations can be particularized for the case of films fabricated at normal incidence.

You do not currently have access to this content.