The effect on the field emission characteristics of the aspect ratio of an isolated emitter, together with the position of the anode electrode are reported. We show by computational simulation that the field enhancement factor β is only dependant on the emitter height h, radius r, when the anode to cathode separation D is greater than three times the height of the emitter away from the tip. In this regime the enhancement factor is independent of the anode location and approaches a value depicted by h and r alone and is described by the expression β0=(1+hαr)m where α=2 and m=1. As the anode is brought close to the tip of the emitter, the emitter tip and anode approximate a parallel plate configuration and the enhancement factor tends to unity. Extracted enhancement factor and threshold fields are described by a modified applied electric field taking Dh as the separation. Comparison with previously reported experimental results is also given.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
A. G.
Rinzler
,
J. H.
Hafner
,
P.
Nikolaev
,
L.
Lou
,
S. G.
Kim
,
D.
Tománek
,
P.
Nordlander
,
D. T.
Colbert
, and
R. E.
Smalley
,
Science
269
,
1550
(
1995
).
3.
W. A.
de Heer
,
A.
Chatelain
, and
D.
Ugarte
,
Science
270
,
1179
(
1995
).
4.
Y.
Saito
,
K.
Hamaguchi
,
T.
Nishino
,
K.
Hata
, and
K.
Tohji
,
Jpn. J. Appl. Phys., Part 2
36
,
L1340
(
1997
).
5.
J. M.
Bonard
,
J. P.
Salvetat
,
T.
Stockli
,
L.
Forra
, and
A.
Chatelain
,
Appl. Phys. A: Mater. Sci. Process.
69
,
245
(
1999
).
6.
C. J.
Edgcombe
and
U.
Valdre
,
J. Microsc.
203
,
188
(
2001
).
7.
V.
Filip
,
D.
Nicolaescu
, and
F.
Okuyama
,
J. Vac. Sci. Technol. B
19
,
1016
(
2001
).
8.
C. H.
Adessi
and
M.
Devel
,
Phys. Rev. B
65
,
075418
(
2002
).
9.
K. W.
Wong
,
X. T.
Zhou
,
F. C. K.
Au
,
K. L.
Lai
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
75
,
2918
(
1999
).
10.
B.
Li
,
Y.
Bando
,
D.
Golberg
, and
K.
Kurashima
,
Appl. Phys. Lett.
81
,
5048
(
2002
).
11.
Y-H
Lee
,
C-H
Choi
,
Y-T
Jang
,
E-K
Kim
, and
B-K
Ju
,
Appl. Phys. Lett.
81
,
745
(
2002
).
12.
C. A.
Spindt
,
J. Appl. Phys.
39
,
3504
(
1968
).
13.
J.
Chen
,
S. Z.
Deng
, and
N. S.
Xu
,
Appl. Phys. Lett.
80
,
3620
(
2002
).
14.
R. H.
Fowler
and
L. W.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
)
15.
W. K.
Dyke
and
W. W.
Dolan
,
Adv. Electron. Electron Phys.
8
,
89
(
1956
).
16.
A.
Mayer
,
N. M.
Miskovsky
, and
P. H.
Cutler
,
Phys. Rev. B
65
,
155420
(
2002
).
17.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J-M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
18.
SILVACO™
, Silvaco Int., Santa Clara, CA.
19.
Modifications to the Fowler–Nordheim model had to be performed as this model was originally designed for use in MOSFET devices calculating emission current between silicon and silicon oxide layers. Therefore, the emission barrier is defaulted to 2 eV. For emission from CNT’s into a vacuum an emission barrier of approximately 4.5 eV is used. This is achieved by modifying the two variables, f.ae and f.be which control the Fowler–Nordheim model within the SILVACO package.
20.
J. M.
Bonard
,
M.
Croci
,
I.
Arfaoui
,
O.
Noury
,
D.
Sarangi
, and
A.
Châtelain
,
Diamond Relat. Mater.
11
,
763
(
2002
).
21.
H. G.
Kosmahl
,
IEEE Trans. Electron Devices
38
,
1534
(
1991
).
You do not currently have access to this content.