Phase-shifting masks are widely used in optical lithography, and the question is whether the technology can be extended to much shorter wavelengths. We have extensively modeled the use of clear phase-mask materials as absorbers for x-ray exposures. Similar to the optical domain, the imaging from x-ray phase masks is highly nonlinear, and thus can be used to produce a feature reduction of 35× compared to the mask pattern. This observation suggests that mask fabrication might be easier, but the technique is most suited for less dense pattern requirements. In this article we review some of the salient modeling, examine the requirements for effective fabrication of the masks, and provide some experimental verification of this approach to reach the sub-50nm region. It is not essential to have exactly a 180° phase shift in the clear material, because mask feature reductions can be achieved with 45, 90, 180, and 270° shifts by choosing the appropriate thicknesses of the clear material. A mask with a 235nm feature and a 45° thickness is transformed into a 134nm aerial feature, but the same dose for a 180° thickness results in an 86nm feature. The best resolution is obtained in the so-called bright peak enhanced x-ray phase mask (BPEXPM) mode with thicknesses appropriate to 180° or greater. Previous modeling of the clear phase feature indicated a strong dependence on the wall slope, and fabrication processes are being pursued to verify the modeling and demonstrate the slope dependence on the feature profile. Silicon nitride with a phase shift of 126° is currently employed, but other materials could also be used in the mask fabrication. Experimentally, we are pursuing the feature width reduction achieved from correctly fabricated masks to produce gate width structures at the sub-50nm region.

1.
K. D.
Cummings
and
F. M.
Schellenberg
, editors,
J. Microlithogr., Microfabr., Microsyst.
3
,
202
(
2004
).
2.
V.
White
and
F.
Cerrina
,
J. Vac. Sci. Technol. B
10
,
3141
(
1992
).
3.
T.
Horiuchi
and
K.
Deguchi
,
Jpn. J. Appl. Phys., Part 1
33
,
2798
(
1994
).
4.
L.
Yang
,
F.
Cerrina
, and
J. W.
Taylor
,
J. Vac. Sci. Technol. B
20
,
250
(
2001
).
5.
L.
Yang
,
J. W.
Taylor
, and
F.
Cerrina
, “
Enhanced Bright Peak Clear Phase Shifting Mask and Method of Use
,” U. S. Patent 6,428,939, 6 August
2002
.
6.
D. H.
Malueg
,
M.
Khan
,
F.
Cerrina
, and
J. W.
Taylor
,
Jpn. J. Appl. Phys., Part 1
43
,
3722
(
2004
).
7.
Y.
Ku
,
E.
Anderson
,
M.
Schattenburg
, and
H.
Smith
,
J. Vac. Sci. Technol. B
6
,
150
(
1988
).
8.
G. M.
Wells
,
M.
Reilly
,
F.
Moore
,
F.
Cerrina
, and
K.
Yamazaki
,
Proc. SPIE
2512
,
167
(
1995
).
9.
M. L.
Schattenburg
,
K.
Early
,
Y. C.
Ku
,
W.
Chu
,
M. I.
Shepard
,
S. C.
The
, and
H. I.
Smith
,
J. Vac. Sci. Technol. B
8
,
1604
(
1990
).
10.
M.
Gentili
,
E.
DiFabrizio
,
L.
Grella
,
M.
Baciocchi
,
L.
Mastrogiacomo
,
R.
Maggiora
,
J.
Xiao
, and
F.
Cerrina
,
J. Vac. Sci. Technol. B
12
,
3954
(
1994
).
11.
H. I.
Smith
,
E. H.
Anderson
, and
M. L.
Schattenburg
, “
Lithography Mask with a π-Phase Shifting Attenuator
,” U. S. Patent 4,890,309, 26 December
1989
.
You do not currently have access to this content.