We have used conductive atomic force microscopy to image the nanoscale current distribution in SrTiO3 grown epitaxially on n+-Si by molecular beam epitaxy. Topographic and current images were obtained simultaneously in contact mode with a bias voltage applied to the sample. Topographic images show a flat surface with a roughness of about 0.5 nm. Current images show small areas with local current flow on the order of pA for voltages larger than ∼2 V in forward bias and larger than ∼4 V in reverse bias. Histograms of the magnitude of the electrical current show a relatively narrow log-normal distribution, suggesting a common current mechanism with a Gaussian distribution in a parameter on which the current depends exponentially. Analysis of current images and histograms over a range of bias voltages suggests thermionic emission as the dominant current mechanism, rather than conduction associated with localized defects such as pin-holes, threading dislocations or grain boundaries. The analysis yields a barrier height of ∼0.5–0.6 eV with and a relative dielectric constant of 5–15, which is in reasonable agreement with previous reports using a dead layer model.

1.
K.
Eisenbeiser
,
J. M.
Finder
,
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
J. A.
Hallmark
,
R.
Droopad
,
W. J.
Ooms
,
L.
Salem
,
S.
Bradshaw
, and
C. D.
Overgaard
,
Appl. Phys. Lett.
76
,
1324
(
2000
).
2.
R.
Droopad
,
Z.
Yu
,
J.
Ramdani
,
L.
Hilt
,
J.
Curless
,
C.
Overgaard
,
J. L.
Edwards
, Jr.
,
J.
Finder
,
K.
Eisenbeiser
, and
W.
Ooms
,
Mater. Sci. Eng., B
87
,
292
(
2001
).
3.
K.
Abe
and
S.
Komatsu
,
Jpn. J. Appl. Phys., Part 2
32
,
L1157
(
1993
).
4.
F.
Sánchez
,
R.
Aguiar
,
V.
Trtik
,
C.
Guerrero
,
C.
Ferrater
, and
M.
Varela
,
J. Mater. Res.
13
,
1422
(
1998
).
5.
O.
Nakagawara
,
M.
Kobayashi
,
Y.
Yoshino
,
Y.
Katayama
,
H.
Tabata
, and
T.
Kawai
,
J. Appl. Phys.
78
,
7226
(
1995
).
6.
H.
Mori
and
H.
Ishiwara
,
Jpn. J. Appl. Phys., Part 2
30
,
L1415
(
1991
).
7.
B. K.
Moon
and
H.
Ishiwara
,
Jpn. J. Appl. Phys., Part 1
33
,
1472
(
1994
).
8.
R. A.
McKee
,
F. J.
Walker
, and
M.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
9.
S.
Jeon
,
F. J.
Walker
,
C. A.
Billman
,
R. A.
McKee
, and
H.
Hwang
,
IEEE Electron Device Lett.
24
,
218
(
2003
).
10.
Y.
Liang
,
S.
Gan
, and
M.
Engelhard
,
Appl. Phys. Lett.
79
,
3591
(
2001
).
11.
V. Vaithyanathan, J. Lettieri, J. Haeni, L. Edge, J. Schubert, and D. G. Schlom (unpublished).
12.
E. J.
Miller
,
D. M.
Schaadt
,
E. T.
Yu
,
C.
Poblenz
,
C.
Elsass
, and
J. S.
Speck
,
J. Appl. Phys.
91
,
9821
(
2002
).
13.
S.
Zafar
,
R. E.
Jones
,
B.
Jiang
,
B.
White
,
V.
Kaushik
, and
S.
Gillespie
,
Appl. Phys. Lett.
73
,
3533
(
1998
).
14.
J. G.
Simmons
,
Phys. Rev. Lett.
15
,
967
(
1965
).
15.
H. P. R.
Frederikse
,
W. R.
Hosler
, and
W. R.
Thurber
,
Phys. Rev.
143
,
648
(
1966
).
16.
G. L. Snider, Computer Program 1D Poisson/Schrödinger: A Band Diagram Calculator, University of Notre Dame, 1995.
17.
K.
Liu
,
B.
Zhang
,
M.
Wan
,
J. H.
Chu
,
C.
Johnston
, and
S.
Roth
,
Appl. Phys. Lett.
70
,
2891
(
1997
).
18.
K. W.
Wong
,
S. T.
Lee
,
Z.
Lin
,
Y. W.
Lam
, and
R. W. M.
Kwok
,
Jpn. J. Appl. Phys., Part 1
38
,
791
(
1999
).
19.
S. A.
Chambers
,
Y.
Liang
,
Z.
Yu
,
R.
Droopad
, and
J.
Ramdani
,
J. Vac. Sci. Technol. A
19
,
934
(
2001
).
20.
C.
Zhou
and
D. M.
Newns
,
J. Appl. Phys.
82
,
3081
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.