The features of ultra-shallow junctions indicated by 2001 International Roadmaps require challenging characteristics for secondary ion mass spectrometry (SIMS) instruments: an ultra high depth resolution, minimization of transient width before the steady state and the ability to manage high concentration quantification in the near surface region. In this article a new magnetic sector SIMS, the Cameca Sc-Ultra, has been evaluated in order to profile boron ultra shallow junctions. In this apparatus the use of normal incidence oxygen bombardment is precluded and the primary column allows for a ⩾60° nominal incidence angle. Several approaches varying analytical parameters as energy, incidence angle and oxygen flooding have been tested on boron delta layers samples. In this way a quantitative comparison of different analytical methodologies is possible and the better analytical approach is pointed out. Moreover, an in situ laser depth profile measurement tool has been tested and the advantages and limitation are shown. The minimum impact energy used is 0.5 keV, but the instrument performance can be further improved by using lower impact energy (300 eV), a rotating stage to minimize surface roughness, and a primary column with a nominal angle of 30°. SIMS depth profiles on technological samples have been also carried out and shown.

1.
The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, 2001.
2.
M. G.
Dowsett
,
Appl. Surf. Sci.
203–204
,
5
(
2003
).
3.
K.
Wittmaack
,
Appl. Surf. Sci.
203–204
,
20
(
2003
).
4.
D. P. Chu, M. G. Dowsett, T. J. Ormsby, and G. A. Cooke, Characterization and Metrology for ULSI Technology: 1998 International Conference, Gaithersburg, MD, 1998, edited by D. G. Seiler, A. C. Diebold, W. M. Bullis, T. J. Shaffner, R. McDonald, and E. J. Walters (American Institute of Physics, Woodbury, NY, 1998), p. 771.
5.
Z. X.
Jiang
and
P. F. A.
Alkemade
,
J. Vac. Sci. Technol. B
16
,
1971
(
1998
).
6.
K.
Wittmaack
,
J. Vac. Sci. Technol. B
16
,
2776
(
1998
).
7.
C. W. Magee, G. R. Mount, S. P. Smith, B. Herner, and H.-J. Gossmann, Ion Implantation Technology-98: 1998 International Conference on Ion Implantation Technology, Kyoto, 1998, edited by G. Matsuo, G. Takaoka, and I. Yamada (IEEE Electron Devices Society, New York, 1998).
8.
K.
Wittmaack
,
J. Vac. Sci. Technol. B
18
,
1
(
2000
).
9.
M. Bersani, P. Lazzeri, D. Giubertoni, M. Barozzi, E. Boscolo Marchi, and M. Anderle, IIT 2002-Ion Implantation Technology 2002 Proceedings, Taos, 2002 (in press).
10.
M. Anderle, M. Barozzi, M. Bersani, D. Giubertoni, and P. Lazzeri, Char-acterization and Metrology for ULSI Technology: 2003 International Conference, Austin, TX, 2003, edited by D. G. Seiler, A. C. Diebold, T. J. Shaffner, R. McDonald, S. Zollner, R. P. Khosla, and E. M. Sekula (American Institute of Physics, Woodbury, NY, 2003), p. 695.
11.
E. De Chambost, B. Boyer, B. Rasser, and M. Schuhmacher, Secondary Ion Mass Spectrometry SIMS XII, Leuven 1999, edited by A. Benninghoven, P. Bertrand, H. N. Migeon, and H. W. Werner (Elsevier Science, Amsterdam, 2000), p. 533.
12.
T. Bitter, E. De Chambost, P. Monsallut, B. Rasser, and M. Schuhmacher, in Ref. 11, p. 731.
13.
J. E. Kempf and H. H. Wagner, in Thin Film and Depth Profile Analysis, edited by H. E. Oechsner (Springer, Berlin, 1984), p. 87.
14.
N.
Baboux
,
J. C.
Dupuy
,
G.
Prudon
,
P.
Holliger
,
F.
Laugier
,
A. M.
Papon
, and
J. M.
Hartmann
,
J. Cryst. Growth
245
,
1
(
2002
).
15.
E.
De Chambost
,
P.
Montsallut
,
B.
Rasser
, and
M.
Schuhmacher
,
Appl. Surf. Sci.
203–204
,
391
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.