Siloxane and silsesquioxane copolymers have been synthesized and first evaluated as potential components of 157 nm resist materials. In block copolymers of dimethylsiloxane and tert-butyl methacrylate negative imaging chemistry dominates at 157 nm, due to the presence of the siloxane component, although positive imaging in aqueous base developers via chemical amplification was obtained at longer wavelengths (248 nm). The same behavior is observed in graft copolymers of dimethylsiloxane and tert-butyl methacrylate. On the other hand, random copolymers of polymerizable polyhedral oligomeric silsesquioxane monomers with various acrylates, including partially fluorinated, can be used as components of resist formulations that provide positive imaging at 157 nm, aqueous base development, and physicochemical properties which resemble those of conventional poly(meth)acrylates. Pattern transfer properties depend on the selection of the silsesquioxane component. Polymers containing 30% or higher w/w ethyl-substituted silsesquioxane cages provide the necessary etch resistance as well as low surface roughness to oxygen plasma at 100 nm film thickness, allowing bilayer 157 nm lithography, even without further absorbance optimization.

1.
R. R.
Kunz
,
T. M.
Bloomstein
,
D. E.
Hardy
,
R. B.
Goodman
,
D. K.
Downs
, and
J. E.
Curtin
,
Proc. SPIE
3678
,
13
(
1999
).
2.
M.
Toriumi
,
N.
Shida
,
T.
Yamazaki
,
H.
Watanabe
,
S.
Ishikawa
, and
T.
Itani
,
Microelectron. Eng.
61
,
717
(
2002
).
3.
S.
Hien
,
S.
Angood
,
D.
Ashworth
,
S.
Basset
,
T.
Bloomstein
,
K.
Dean
,
R. R.
Kunz
,
D.
Miller
,
S.
Patel
, and
G.
Rich
,
Proc. SPIE
4345
,
439
(
2001
).
4.
J.
Shaw
,
E.
Babich
,
M.
Hatzakis
, and
J.
Paraszczak
,
Solid State Technol.
30
,
83
(
1987
).
5.
G. P.
Patsis
,
A.
Tserepi
,
I.
Raptis
,
N.
Glezoe
,
E.
Gogolides
, and
E. S.
Valamontes
,
J. Vac. Sci. Technol. B
18
,
3292
(
2000
).
6.
A.
Tserepi
,
E. S.
Valmontes
,
E.
Tegou
,
I.
Raptis
, and
E.
Gogolides
,
Microelectron. Eng.
57
,
547
(
2001
).
7.
A. Tserepi, G. Cordoyiannis, G. P. Patsis, V. Constantoudis, E. Gogolides, E. S. Valamontes, D. Eon, M. C. Peignon, C. Cardinaud, and G. Turban (to be published).
8.
J. C. van de Grampel, R. Puyenbroek, B. Rousseeun, and E. van der Drift, Inorganic and Organometallic Polymers II, ACS Symp. Ser. 572 (American Chemical Society, Washington, DC, 1994), p. 81.
9.
A. H. Gabor and C. K. Ober, Microelectronics Technology, ACS Symp. Ser. 614 (American Chemical Society, Washington, DC, 1995), p. 281.
10.
R.
Sooriyakumaran
,
D.
Fenzer-Alexander
,
N.
Fender
,
G. M.
Wallraff
, and
R. D.
Allen
,
Proc. SPIE
4345
,
319
(
2001
).
11.
H.
Wu
,
Y.
Hu
,
K. E.
Gonsalves
, and
M. J.
Yakaman
,
J. Vac. Sci. Technol. B
19
,
851
(
2001
).
12.
V.
Bellas
,
H.
Iatrou
,
E. N.
Pitsinos
, and
N.
Hadjichristidis
,
Macromolecules
34
,
5376
(
2001
).
13.
C.
Skordoulis
,
S. M.
Spyrou
, and
A. C.
Cefalas
,
Appl. Phys. B: Photophys. Laser Chem.
51
,
141
(
1990
).
14.
A. C.
Cefalas
,
E.
Sarantopoulou
, and
Z.
Kollia
,
J. Opt. Soc. Am. B
16
,
625
(
1999
).
15.
J. V. Crivello, U.S. Patent No. 4,689,289 (1987).
16.
X.
Chen
,
J.
Gardella
, and
P. L.
Kumler
,
Macromolecules
25
,
6621
(
1992
).
17.
J.
Hatakeyama
,
M.
Nakshima
,
I.
Kaneko
,
S.
Nagura
, and
T.
Ishihara
,
Proc. SPIE
3333
,
62
(
1998
).
18.
M.
Unno
,
A.
Suto
, and
H.
Matsumoto
,
J. Am. Chem. Soc.
124
,
1574
(
2002
).
19.
L.
Zheng
,
A. J.
Waddon
,
R. J.
Farris
, and
B. E.
Coughlin
,
Macromolecules
35
,
2375
(
2002
).
20.
J.
Paraszczak
,
E.
Babich
,
R.
McGouey
,
J.
Heindenreich
,
M.
Hatzakis
, and
J.
Shaw
,
Microelectron. Eng.
6
,
453
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.