Achievement of nanosized thin films of titania was achieved by radio-frequency sputtering of a Ti(97%)–Mo(3%) target. Deposition was performed under inert or reactive atmosphere followed by annealing at temperatures up to 800 °C. The resulting layers became more stoichiometric as annealing temperature increased. The small part of Mo proved useful to prevent exaggerated grain coalescence. Reactive sputtering was more effective than inert deposition to achieve a nanograined layer with lowest size (31 nm). Mo segregated at the surface and partially sublimated as MoO3. The layers became n-doped semiconductors and were tested as chemoresistive gas sensors. Good capability to sense ethanol was determined within a range useful for applications. A model was proposed to explain the response to ethanol.

1.
H.
Tang
,
K.
Prasad
,
R.
Sanjinés
, and
F.
Lévy
,
Sens. Actuators B
26-27
,
71
(
1995
).
2.
K.
Bange
,
C. R.
Ottermann
,
O.
Anderson
,
U.
Jeschkowsky
,
M.
Laube
, and
R.
Feile
,
Thin Solid Films
197
,
279
(
1991
).
3.
B.
O’Regan
and
M.
Grätzel
,
Nature (London)
353
,
737
(
1991
).
4.
T.
Gerfin
,
M.
Grätzel
, and
L.
Walder
,
Prog. Inorg. Chem.
44
,
345
(
1997
).
5.
X.
Marguetettaz
and
D.
Fitzmaurice
,
J. Am. Chem. Soc.
116
,
5017
(
1994
).
6.
S. Y.
Huang
,
L.
Kavan
,
I.
Exnar
, and
M.
Grätzel
,
J. Electrochem. Soc.
142
,
142
(
1995
).
7.
K.
Sunada
,
Y.
Kikuchi
,
K.
Hashimoto
, and
A.
Fujishima
,
Environ. Sci. Technol.
32
,
726
(
1998
).
8.
Hussain Al-Ekabi, in Proceedings of the Third International Conference on TiO2 Purification and of Water and Air, Orlando, 1997 (unpublished).
9.
P. K.
Dutta
,
A.
Ginwalla
,
B.
Hogg
,
B. R.
Patton
,
B.
Chwieroth
,
Z.
Liang
,
P.
Gouma
,
M.
Mills
, and
S.
Akbar
,
J. Phys. Chem. B
103
,
4412
(
1999
).
10.
N.
Bonini
,
M. C.
Carotta
,
V.
Guidi
,
C.
Malagù
,
G.
Martinelli
,
L.
Paglialonga
, and
M.
Sacerdoti
,
Sens. Actuators B
68
,
274
(
2000
).
11.
U.
Kirner
,
K. D.
Schierbaum
,
W.
Göpel
,
B.
Leibold
,
N.
Nicoloso
,
W.
Weppner
,
D.
Fischer
, and
W. F.
Chu
,
Sens. Actuators B
1
,
103
(
1990
).
12.
G.
Sberveglieri
,
L. E.
Depero
,
M.
Ferroni
,
V.
Guidi
,
G.
Martinelli
,
P.
Nelli
,
C.
Perego
, and
L.
Sangaletti
,
Adv. Mater.
8
,
334
(
1996
).
13.
M. C.
Carotta
,
M.
Ferroni
,
V.
Guidi
, and
G.
Martinelli
,
Adv. Mater.
11
,
943
(
1999
).
14.
B. B.
Beck
,
J. M.
White
, and
C. T.
Ratcliffe
,
J. Phys. Chem.
90
,
3132
(
1986
).
15.
V.
Guidi
,
M. C.
Carotta
,
M.
Ferroni
,
G.
Martinelli
,
L.
Paglialonga
,
P.
Nelli
, and
G.
Sberveglieri
,
Sens. Actuators B
57
,
197
(
1999
).
16.
E.
Comini
,
V.
Guidi
,
C.
Frigeri
,
M.
Ferroni
,
D.
Boscarino
, and
G.
Sberveglieri
,
J. Mater. Res.
16
,
1559
(
2001
).
17.
V.
Guidi
,
D.
Boscarino
,
E.
Comini
,
G.
Faglia
,
M.
Ferroni
,
C.
Malagù
,
G.
Martinelli
,
V.
Rigato
, and
G.
Sberveglieri
,
Sens. Actuators B
65
,
264
(
2000
).
18.
M.
Ichikawa
,
Bull. Chem. Soc. Jpn.
51
,
2273
(
1978
).
19.
N. Yamazoe and N. Miura, Chemical Sensor Technology (Elsevier, Amsterdam, 1992), Vol. 4, pp. 19, 42.
20.
T.
Maekawa
,
J.
Tamaki
,
N.
Miura
,
N.
Yamazoe
, and
S.
Matsushima
,
Sens. Actuators B
9
,
63
(
1992
).
21.
S. Bouwstra, J. Branebjerg, and R. de Reus, in Proceedings of the XIV Eurosensors Conference, Copenhagen, 2000 (unpublished).
22.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
9
,
344
(
1985
).
23.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
15
,
227
(
1986
).
24.
J. A. Leavitt and L. C. McIntyre, Jr., Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Pittsburgh, 1995), p. 37.
25.
G.
Sberveglieri
,
L. E.
Depero
,
S.
Groppelli
, and
P.
Nelli
,
Sens. Actuators B
26-27
,
89
(
1995
).
26.
Handbook of Chemistry and Physics (CRC Press, Cleveland, 1974), p. 1254.
27.
H.
Zhang
,
and
J. F.
Banfield
,
J. Mater. Chem.
8
,
2073
(
1998
).
28.
M.
Ferroni
,
V.
Guidi
,
G.
Martinelli
,
E.
Comini
,
G.
Sberveglieri
,
D.
Boscarino
, and
G.
Della Mea
,
J. Appl. Phys.
88
,
1097
(
2000
).
29.
P. I.
Gouma
,
P. K.
Dutta
, and
M. J.
Mills
,
Nanostruct. Mater.
11
,
1231
(
1999
).
30.
M.
Ferroni
,
V.
Guidi
,
G.
Martinelli
,
G.
Faglia
,
P.
Nelli
, and
G.
Sberveglieri
,
Nanostruct. Mater.
7
,
709
(
1996
).
31.
N. Yamazoe and N. Miura, Some Basic Aspects of Semiconductor Gas Sensors in Chemical Sensor Technology (Elsevier, Amsterdam, 1992), Vol. 4, p. 19.
32.
S. R. Morrison, The Chemical Physics of Surfaces (Plenum, New York, 1977), Chap. 2, p. 25.
33.
M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices (Academic, New York, 1988), p. 67.
34.
H.
Idriss
,
E. G.
Seebauer
,
J. Mol. Catal. A: Chem.
152
,
201
(
2000
).
35.
T.
Brousse
and
D. M.
Schleich
,
Sens. Actuators B
31
,
77
(
1996
).
36.
V. Guidi, L. Casarotto, E. Comini, M. Ferroni, G. Martinelli, M. Sacerdoti, and G. Sberveglieri, Sens. Actuators B (in press).
37.
V. Ya. Sukharev, Semiconductor Sensors in Physico-Chemical Studies (Elsevier, Amsterdam, 1996), Chap. 1, p. 23l.
38.
C.
Garzella
,
E.
Comini
,
E.
Tempesti
,
C.
Frigeri
, and
G.
Sberveglieri
,
Sens. Actuators B
68
,
189
(
2000
).
39.
G.
Sberveglieri
,
E.
Comini
,
G.
Faglia
,
M. Z.
Atashbar
, and
W.
Wlodarski
,
Sens. Actuators B
66
,
139
(
2000
).
40.
E.
Comini
,
G.
Faglia
,
G.
Sberveglieri
,
Y. X.
Li
,
W.
Wlodarsky
, and
M. K.
Ghantasala
,
Sens. Actuators B
64
,
169
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.