A low-current scanning tunneling microscope (STM) was used to image ordered alkanethiol self-assembled monolayers (SAMs) on Au (111) surface. The effects of the tunneling current on the STM images of both decanethiol and dodecanethiol SAMs were studied. At low current, with the tip above the sample surface, domain boundaries and ordered alkanethiol molecules can be seen clearly. When the tunneling current was increased, destructive STM images of decanethiol and dodecanethiol SAMs were observed. However, when the tunneling current was reduced back to the original low values, the ordered structures of alkanethiol molecules reappeared. This reversible process suggests that there is no rearrangement in the sulfur head groups under different tunneling current conditions. In this article, we present a model which supports the important role of the alkyl chain in the STM imaging of SAMs. In our model, the medium conductance is a key factor.

1.
A. Ulmann, Self-assembled Monolayer of Thiols (Academic, New York, 1998).
2.
T. E. Mallouk and J. D. Harrison, Interfacial Design and Chemical Sensing (American Chemical Society, Washington, DC, 1994).
3.
L.
Haussling
,
W.
Knoll
,
H.
Ringsdorf
,
F. J.
Schmitt
, and
J.
Yang
,
Makromol. Chem., Macromol. Symp.
46
,
145
(
1991
).
4.
F. P.
Zamborini
and
R. M.
Crook
,
Langmuir
14
,
3279
(
1998
).
5.
L.
Haussling
,
H.
Ringsdorf
,
F. J.
Schmitt
, and
W.
Knoll
,
Langmuir
7
,
1837
(
1991
).
6.
R. G.
Nuzzo
,
L. H.
Dubois
, and
D. L.
Allara
,
J. Am. Chem. Soc.
112
,
558
(
1990
).
7.
C. D.
Bain
,
E. B.
Troughton
,
Y. T.
Tao
,
J.
Evall
,
G. M.
Whitesides
, and
R. G.
Nuzzo
,
J. Am. Chem. Soc.
111
,
321
(
1989
).
8.
C. D.
Bain
,
J.
Evall
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
111
,
7155
(
1989
).
9.
C. D.
Bain
and
G. M.
Whitesides
,
J. Am. Chem. Soc.
111
,
7164
(
1989
).
10.
L.
Strong
and
G. M.
Whitesides
,
Langmuir
4
,
546
(
1988
).
11.
C. E. D.
Chidsey
,
G.
Liu
,
P.
Rowntree
, and
G.
Scoles
,
J. Chem. Phys.
91
,
4421
(
1989
).
12.
L. H.
Dubois
,
B. R.
Zegarski
, and
R. G.
Nuzzo
,
J. Chem. Phys.
98
,
678
(
1993
).
13.
L.
Häussling
,
B.
Michel
,
H.
Ringsdorf
, and
H.
Rohrer
,
Angew. Chem. Int. Ed. Engl.
30
,
569
(
1991
).
14.
C. A.
Widrig
,
C. A.
Alves
, and
M. D.
Porter
,
J. Am. Chem. Soc.
113
,
2805
(
1991
).
15.
C. A.
Alves
,
E. L.
Smith
, and
M. D.
Porter
,
J. Am. Chem. Soc.
114
,
1222
(
1992
).
16.
Y. T.
Kim
and
A. J.
Bard
,
Langmuir
8
,
1096
(
1992
).
17.
L.
Sun
and
R. M.
Crooks
,
J. Electrochem. Soc.
138
,
L23
(
1991
).
18.
K.
Edinger
,
A.
Gölzhäuser
,
K.
Demota
,
C.
Wöll
, and
M.
Grunze
,
Langmuir
9
,
4
(
1993
).
19.
R. L.
McCarley
,
D. J.
Dunaway
, and
R. J.
Willicut
,
Langmuir
9
,
2775
(
1993
).
20.
J. P.
Bucher
,
L.
Santesson
, and
K.
Kern
,
Langmuir
10
,
979
(
1994
).
21.
C.
Schönenberger
,
J. A. M.
Sondag-Huethorst
,
J.
Jorritsma
, and
L. G. J.
Fokkink
,
Langmuir
10
,
611
(
1994
).
22.
J. A. M.
Sondag-Huethorst
,
C.
Schönenberger
, and
L. G. J.
Fokkink
,
J. Phys. Chem.
98
,
6826
(
1994
).
23.
C.
Schönenberger
,
J.
Jorritsma
,
J. A. M.
Sondag-Huethorst
, and
L. G. J.
Fokkink
,
J. Phys. Chem.
99
,
3259
(
1995
).
24.
G. E.
Poirier
and
E. D.
Pylant
,
Science
272
,
1145
(
1996
).
25.
R.
Yamada
,
H.
Wano
, and
K.
Uosaki
,
Langmuir
16
,
5523
(
2000
).
26.
C. A.
McDermott
,
M. T.
McDermott
,
J. B.
Green
, and
M. D.
Porter
,
J. Phys. Chem.
99
,
13257
(
1995
).
27.
G. E.
Poirier
,
Langmuir
13
,
2019
(
1997
).
28.
G. E.
Poirier
,
Chem. Rev.
97
,
1117
(
1997
) and references therein.
29.
R.
StaTub
,
M.
Toerker
,
T.
Fritz
,
T.
Schmitz-Hübsch
,
F.
Sellam
, and
K.
Leo
,
Langmuir
14
,
6693
(
1998
).
30.
G.
Liu
and
M. B.
Salmeron
,
Langmuir
10
,
367
(
1994
).
31.
K.
Tamada
,
M.
Hara
,
H.
Sasabe
, and
W.
Knoll
,
Langmuir
13
,
1558
(
1997
).
32.
S. F.
Chen
,
L. Y.
Li
,
C. L.
Boozer
, and
S. Y.
Jiang
,
Langmuir
16
,
9287
(
2000
).
33.
P.
Fenter
,
A.
Eberhardt
, and
P.
Eisenberger
,
Science
266
,
1216
(
1994
).
34.
N.
Camillone
,
C. E. D.
Chidsey
,
G.
Liu
, and
G. J.
Scoles
,
Chem. Phys.
98
,
4234
(
1993
).
35.
J. P.
Bucher
,
L.
Santesson
, and
K.
Kern
,
Appl. Phys. A: Solids Surf.
59
,
135
(
1994
).
36.
L. A.
Bumm
,
J. J.
Arnold
,
T. D.
Dunbar
,
D. L.
Allara
, and
P. S.
Weiss
,
J. Phys. Chem. B
103
,
8122
(
1999
).
37.
M.
Salmeron
,
G.
Neubauer
,
A.
Folch
,
M.
Tomitori
,
D. F.
Ogletrec
, and
P.
Sautet
,
Langmuir
9
,
3600
(
1993
).
38.
Here we consider the conductance of the region between the alkanethiol molecules to be lower than the conductance of the molecules because it does not have the bridge-assisted electron transfer system as the alkanethiol molecules have.
39.
This current is different for different alkanethiol molecules. For dodecanethiol, this value is around 40 pA. For molecules shorter than docecanethiol, this current becomes larger.
40.
L. A.
Bumm
,
J. J.
Arnold
,
L. F.
Charles
,
T. D.
Dunbar
,
D. L.
Allara
, and
P. S.
Weiss
,
J. Am. Chem. Soc.
121
,
8017
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.