Quantum-dot cellular automata (QCA) may provide a novel way to bypass the transistor paradigm to form ultrasmall computing elements. In the QCA paradigm information is represented in the charge configuration of a QCA cell, which maps naturally to a binary model. Molecular QCA implementations are being explored where the quantum dots in the cell take the form of redox centers in a molecule. Clocking has proved important in QCA cells synthesized so far. Here we examine a method to clock molecular QCA cells which are assembled at an interface. The clocking signals in this scheme originate from wires buried below the QCA surface. We present a simplified model of this clocking method and examine its behavior as a molecular shift register.
REFERENCES
1.
C. S.
Lent
, P. D.
Tougaw
, W.
Porod
, and G. H.
Bernstein
, Nanotechnology
4
, 49
(1993
).2.
3.
A. O.
Orlov
, I.
Amlani
, G. H.
Bernstein
, C. S.
Lent
, and G. L.
Snider
, Science
277
, 928
(1997
);I.
Amlani
, A.
Orlov
, G.
Toth
, G. H.
Bernstein
, C. S.
Lent
, and G. L.
Snider
, Science
284
, 289
(1999
);G. L.
Snider
, A. O.
Orlov
, I.
Amlani
, X.
Zuo
, G. H.
Bernstein
, C. S.
Lent
, J. L
Merz
, and W.
Porod
, J. Appl. Phys.
85
, 4283
(1999
).4.
X Lei, E. E. Wolf, and T. P. Fehlner, Eur. J. Inorg. Chem. 1835 (1998);
W.
Cen
, P.
Lindenfeld
, and T. P.
Fehlner
, J. Am. Chem. Soc.
114
, 5451
(1992
).5.
This content is only available via PDF.
© 2001 American Vacuum Society.
2001
American Vacuum Society
You do not currently have access to this content.