We have investigated the use of lattice-matched AlxGa1−xSbAs quaternary alloys in InP-based microelectronic devices. The band alignment for AlxGa1−xSbAs/InGaAs is calculated across the entire compositional range of x using van de Walle and Martin’s model solid theory, and the theoretical predictions agree with previously published values within 0.1–0.3 eV. Temperature-dependent current–voltage measurements are carried out on Au/Cr/AlxGa1−xSbAs Schottky diodes grown by molecular beam epitaxy. From an Arrhenius analysis, an effective barrier height of 0.67–0.79 eV is obtained, which decreases as the x increases in the range of 0.5⩽x⩽0.9. For the first time, InAlAs/InGaAs high electron mobility transistors are fabricated with an AlxGa1−xSbAs barrier enhancement layer. A reduced gate leakage and delay of gate forward turn-on are attributed to the incorporation of AlxGa1−xSbAs. The effectiveness of AlxGa1−xSbAs is more pronounced for x=0.5 and 0.7 than for x=0.9.

1.
A.-B. Chen and A. Sher, Semiconductor Alloy: Physics and Materials Engineering (Plenum, New York, 1995).
2.
J. L.
Lazzari
,
J. L.
Leclercq
,
P.
Grunberg
,
A.
Joullie
,
B.
Lambert
,
D.
Barbusse
, and
R.
Fourcade
,
J. Cryst. Growth
123
,
465
(
1992
).
3.
H.
Sakaki
,
L. L.
Chang
,
R.
Ludeke
,
C.-A.
Chang
,
G. A.
Sai-Halasz
, and
L.
Esaki
,
Appl. Phys. Lett.
31
,
211
(
1977
).
4.
S.
Loualiche
,
A.
Le Corre
,
S.
Salaun
,
J.
Caulet
,
B.
Lambert
,
M.
Gauneau
,
D.
Lecrosnier
, and
B.
Deveaud
,
Appl. Phys. Lett.
59
,
423
(
1991
).
5.
D. Docter, M. Matloubian, C. Nguyen, S. Bui, and C. Ngo, 40th Electronic Material Conference, 1998, Charlottesville, VA (unpublished).
6.
C. G.
van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
7.
E. T.
Yu
,
J. O.
McCaldin
, and
T. C.
McGill
,
Solid State Phys.
46
,
1
(
1992
).
8.
S.
Adachi
,
J. Appl. Phys.
61
,
4869
(
1987
).
9.
M. P. C. M.
Krijn
,
Semicond. Sci. Technol.
6
,
27
(
1991
).
10.
See, W. Z. Cai and D. L. Miller, J. Appl. Phys. (submitted);
W. Z. Cai, Ph.D. dissertation, The Pennsylvania State University, 2000.
11.
Y.
Nakata
,
Y.
Sugiyama
,
T.
Inata
,
O.
Ueda
,
S.
Sasa
,
S.
Muto
, and
T.
Fujii
,
Mater. Res. Soc. Symp. Proc.
198
,
289
(
1990
).
12.
J. F.
Klem
and
S. R.
Kurtz
,
J. Cryst. Growth
111
,
628
(
1991
).
13.
K.
Yoshimatsu
,
Y.
Kawamura
,
H.
Kurisu
,
A.
Kamada
,
H.
Naito
, and
N.
Inoue
,
J. Cryst. Growth
188
,
328
(
1998
).
14.
Y.
Nakata
,
Y.
Sugiyama
,
O.
Ueda
,
S.
Sasa
,
T.
Fujii
, and
E.
Miyauchi
,
J. Cryst. Growth
99
,
311
(
1990
).
15.
H. C.
Kuo
,
B. G.
Moser
,
H.
Hsia
,
Z.
Tang
,
M.
Feng
,
G.
Stillman
,
C. H.
Lin
, and
H.
Chen
,
J. Vac. Sci. Technol. B
17
,
1139
(
1999
).
16.
S.
Fujita
,
S.
Naritsuka
,
T.
Noda
,
A.
Wagai
, and
Y.
Ashizawa
,
J. Appl. Phys.
73
,
1284
(
1993
).
17.
I.
Poole
,
M. E.
Lee
,
M.
Missous
, and
K. E.
Singer
,
J. Appl. Phys.
62
,
3988
(
1987
).
18.
W.
Mason
and
J. R.
Waterman
,
J. Appl. Phys.
84
,
1426
(
1998
).
19.
J. S.
Best
,
Appl. Phys. Lett.
34
,
522
(
1979
).
20.
M.
Missous
,
W. S.
Truscott
, and
K. E.
Singer
,
J. Appl. Phys.
68
,
2239
(
1990
).
21.
The exact physical nature of the temperature dependence for carrier transport across AlxGa1−xSbAs/InGaAs is not clear, and further studies are needed for clarification. Based on the similarity in compositional dependence between the lower-temperature (23 °C<T<57 °C) activation energy and the X-point ΔEc, we think that the carrier transport is probably dominated by thermionic emission in this temperature range. At higher temperatures there exist a sufficient number of energetic electrons to overcome the barrier height, and consequently the current may be dominated by drift in the insulator layer. Moreover, defect-assisted transport may also be responsible for the diodes’ high-temperature behavior.
This content is only available via PDF.
You do not currently have access to this content.