The field-emission tunneling barrier has been mapped for the doublet and quadruplet emission patterns associated with organic adsorbates on tungsten. The tunneling barrier was mapped by photometric probe-hole field-emission electron microscopy (PhotoFEEM). The adsorbates were deposited by evaporating a film of the molecule copper-phthalocyanine (CuPc) but it may be polymeric groups of CuPc or decomposition products. The tunneling barrier displays unexpected structures that are not seen in the corresponding field-emission images. Doublet patterns observed in the FEEM image can display singlet structures in the corresponding PhotoFEEM barrier maps. Similarly, quadruplet patterns in the FEEM image can display doublet structures in the PhotoFEEM barrier maps. This behavior is similar to supply limited tunneling previously observed in the field-emission barrier of a clean tungsten emitter. An analysis of deviations from purely linear Fowler–Nordheim behavior indicates that the observed structures arise from independent emitters that are spatially superimposed on the surface.

1.
A. J.
Melmed
and
E. W.
Müller
,
J. Chem. Phys.
29
,
1037
(
1958
).
2.
C. R.
Clemmer
and
T. P.
Beebe
,
Science
251
,
640
(
1991
).
3.
G.
Binnig
and
H.
Rohrer
,
IBM J. Res. Dev.
30
,
355
(
1986
).
4.
J. K.
Spong
et al.,
Nature (London), Phys. Sci.
338
,
137
(
1989
).
5.
M.
Kimura
et al.,
Jpn. J. Appl. Phys., Part 1
34
,
3642
(
1995
).
6.
S.
Richter
and
Y.
Manassen
,
J. Phys. Chem.
98
,
2941
(
1994
),.
7.
R. G. Forbes, Scanning Tunneling Microscopy and Related Methods (Kluwer Academic, Norwell, MA, 1990), p. 163.
8.
G. R.
Condon
and
J. A.
Panitz
,
J. Vac. Sci. Technol. B
16
,
23
(
1998
).
9.
R. H.
Fowler
and
L. W.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
10.
R. Gomer, Field Emission and Field Ionization, American Vacuum Society Classes (American Institute of Physics, New York, 1993), p. 48.
11.
E. C.
Teague
,
J. Res. Natl. Bur. Stand.
91
,
171
(
1986
).
12.
R. D.
Young
,
Phys. Rev.
113
,
110
(
1959
).
13.
F. H. Moser and A. L. Thomas, Phthalocyanine Compounds (Reinhold, New York, 1963).
14.
E. W.
Müller
,
Z. Naturforsch. A
5
,
473
(
1950
).
15.
R.
Gomer
and
D. A.
Speer
,
J. Chem. Phys.
21
,
73
(
1953
).
16.
P.
Wolf
,
Z. Angew. Phys.
6
,
529
(
1954
).
17.
E. W.
Müller
,
Z. Phys.
131
,
136
(
1951
).
18.
R.
Gomer
,
J. Chem. Phys.
20
,
1772
(
1952
).
19.
D. J.
Rose
,
J. Appl. Phys.
27
,
215
(
1956
).
20.
I.
Brodie
,
Surf. Sci.
70
,
186
(
1978
).
21.
E. W.
Müller
,
Ergeb. Exakten. Naturwiss.
27
,
290
(
1953
).
22.
R.
Haefer
,
Acta Phys. Austriaca
8
,
105
(
1953
).
23.
G. R. Condon, Thesis, University of New Mexico, 1999, Appendix B.
24.
N. A.
Cade
et al.,
J. Vac. Sci. Technol. B
13
,
549
(
1995
).
25.
J. D.
Levine
,
J. Vac. Sci. Technol. B
13
,
553
(
1995
).
26.
L. W.
Swanson
and
L. C.
Crouser
,
Surf. Sci.
23
,
1
(
1970
).
27.
W.
Mizutani
et al.,
J. Vac. Sci. Technol. A
8
,
675
(
1990
).
28.
H.
Morikawa
et al.,
Jpn. J. Appl. Phys., Part 2
36
,
L583
(
1997
).
29.
P.
Sautet
and
C.
Joachim
,
Surf. Sci.
271
,
387
(
1992
).
30.
A. P.
Komar
and
A. A.
Komar
,
Sov. Phys. Tech. Phys.
6
,
166
(
1961
).
31.
A. P.
Komar
and
A. A.
Komar
,
Sov. Phys. Tech. Phys.
7
,
634
(
1963
).
32.
A. P.
Komar
and
A. A.
Komar
,
Sov. Phys. Solid State
7
,
606
(
1965
).
33.
R.
Gomer
,
J. Chem. Phys.
19
,
1072
(
1951
).
34.
H.
Ohtani
et al.,
Phys. Rev. Lett.
60
,
2398
(
1988
).
35.
P. H.
Lippel
et al.,
Phys. Rev. Lett.
62
,
171
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.