It is demonstrated that a porous polysilicon (PPS) diode with a structure of Au/PPS/n-type Si operates as an efficient stable surface-emitting cold cathode. 1.5 μm of an nondoped polysilicon layer is formed on an n-type (100) silicon wafer and anodized in a solution of HF (50%): ethanol=1:1 at a current density of 10 mA/cm2 for 30 s under illumination by a 500 W tungsten lamp from a distance of 20 cm. Subsequently, a PPS layer is oxidized in a rapid thermal oxidation furnace for 1 h at a temperature of 700 °C. A semitransparent thin Au film (about 10 nm thick) is deposited onto the PPS layer as a positive electrode and an ohmic contact is formed at the back side of the silicon wafer as a negative electrode. When a positive bias is applied to the Au electrode in vacuum, the diode uniformly emits electrons. No electron emission is observed in the negatively biased region. Emission current is about 10−4A/cm2 at a 20 V bias. It is further demonstrated that electrons are quasiballistically emitted from a PPS diode due to a significantly reduced electron scattering in the PPS layer. As a result, the diode can emit fluctuation-free stable electron emission. The simplified model of emission and energy distribution of electrons are proposed and it can explain the experimental results.

1.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
N.
Koshida
and
H.
Koyama
,
Jpn. J. Appl. Phys., Part 2
30
,
L1221
(
1991
).
3.
H.
Koyama
,
T.
Oguno
, and
N.
Koshida
,
Appl. Phys. Lett.
62
,
3177
(
1993
).
4.
T.
Komoda
,
J. P.
Kelly
,
F.
Cristiano
,
A.
Nejim
,
P. L. F.
Hemment
,
K. P.
Homewood
,
R.
Gwillam
,
J. E.
Mynard
, and
B. J.
Sealy
,
Nucl. Instrum. Methods Phys. Res. B
96
,
387
(
1995
).
5.
T.
Komoda
,
J. P.
Kelly
,
A.
Nejim
,
K. P.
Homewood
,
P. L. F.
Hemment
, and
B. J.
Sealy
,
Mater. Res. Soc. Symp. Proc.
358
,
163
(
1995
).
6.
N.
Koshida
and
H.
Koyama
,
Appl. Phys. Lett.
60
,
347
(
1992
).
7.
W. K. Yue, D. L. Parker, and M. H. Weichold, Tech. Dig. Int. Electron Devices Meet. 167 (1990).
8.
N.
Koshida
,
T.
Ozaki
,
X.
Sheng
, and
H.
Koyama
,
Jpn. J. Appl. Phys., Part 2
34
,
L705
(
1995
).
9.
X.
Sheng
,
H.
Koyama
,
N.
Koshida
,
S.
Iwasaki
,
N.
Negishi
,
T.
Chuman
,
T.
Yoshikawa
, and
K.
Ogasawara
,
J. Vac. Sci. Technol. B
15
,
1
(
1997
).
10.
C. A.
Spindt
,
J. Appl. Phys.
39
,
3504
(
1968
).
11.
C. A.
Spindt
,
C. E.
Holland
,
A.
Rosengreen
, and
I.
Brodie
,
J. Vac. Sci. Technol. B
11
,
468
(
1993
).
12.
K.
Yokoo
,
H.
Tanaka
,
S.
Sato
,
J.
Murota
, and
S.
Ono
,
J. Vac. Sci. Technol. B
11
,
429
(
1993
).
13.
M. Suzuki and T. Kusunoki, IDW’96, 529 (1996).
14.
M. W.
Geis
,
J. C.
Twichell
, and
T. M.
Lyszczarz
,
J. Vac. Sci. Technol. B
14
,
2060
(
1996
).
15.
T.
Hirano
,
S.
Kanemaru
,
H.
Tanoue
, and
J.
Itoh
,
Jpn. J. Appl. Phys., Part 1
35
,
6637
(
1996
).
16.
R.
Sedlacik
,
F.
Karel
,
J.
Oswald
,
A.
Fejfar
,
I.
Pelant
, and
J.
Kock
,
Thin Solid Films
255
,
269
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.