Based on the thermodynamic/kinetic model of the exchange mechanism, the ternary intermetallic compound NiAlxGa1−x (where 0<x⩽1) was identified as a metallization that may be used to fabricate Schottky enhanced contacts to n-GaAs. Experimental phase equilibrium studies of the quaternary Al-Ga-Ni-As system, in conjunction with diffusion data available in the literature, indicated that the phase NiAlxGa1−x fulfills the thermodynamic and kinetic requirements necessary for participation in an exchange reaction with GaAs. Contacts to n-GaAs were fabricated by sputter deposition of NiAlxGa1−x metallizations, with compositions corresponding to x=0.00, 0.25, 0.50, 0.75 and 1.00. These contacts were subjected to rapid thermal processing, and analyzed using cross-sectional high resolution transmission electron microscopy and I-V characterization. Electron microscopy and concomitant electron dispersive spectroscopic analysis indicated that a very thin (2.5 nm) interfacial region of AlxGa1−xAs was formed in annealed contacts for which x>0.00, in accordance with the exchange mechanism model. Schottky barrier enhancement was also observed in all annealed contacts for which x>0.00. The degree of Schottky barrier enhancement was shown to be dependent upon the initial composition of the metallization, again in accordance with the prediction of the exchange mechanism model. Schottky barrier heights as high as 0.96 eV were obtained under the optimum annealing conditions of 400 °C for 1 min. However, these experimentally determined Schottky barrier heights were somewhat smaller than the values that were anticipated based upon the exchange mechanism model. Potential reasons for these discrepancies were discussed. Overall, it was demonstrated that the thermodynamic/kinetic model of the exchange mechanism is a powerful tool for identifying metallizations that may be used to enhance the Schottky barriers of contacts to n-GaAs.

1.
W.
Schottky
,
Naturwissenschaften
26
,
843
(
1938
).
2.
N. F.
Mott
,
Proc. Cambridge Philos. Soc.
34
,
568
(
1938
).
3.
J.
Bardeen
,
Phys. Rev.
71
,
717
(
1947
).
4.
V.
Heine
,
Phys. Rev. A
138
,
1689
(
1965
).
5.
W. E.
Spicer
,
I.
Lindau
,
P.
Skeath
, and
C. Y.
Su
,
J. Vac. Sci. Technol.
17
,
1019
(
1980
).
6.
J. L.
Freeouf
and
J. M.
Woodall
,
Appl. Phys. Lett.
39
,
727
(
1981
).
7.
E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, UK, 1988).
8.
K.
Shenai
,
R. S.
Scott
, and
B. J.
Baliga
,
IEEE Trans. Electron Devices
ED-36
,
1811
(
1989
).
9.
R. A.
Scranton
,
J. S.
Best
, and
J. O.
McCaldin
,
J. Vac. Sci. Technol.
14
,
930
(
1977
).
10.
J.
Massies
,
J.
Chaplart
,
M.
Laviron
, and
N. T.
Linh
,
Appl. Phys. Lett.
38
,
693
(
1981
).
11.
W. E.
Stanchina
,
M. D.
Clark
,
K. V.
Vaidyanathan
,
R. A.
Jullens
, and
C. R.
Crowell
,
J. Electrochem. Soc.
134
,
281
(
1984
).
12.
S.
Fujieda
,
Appl. Phys. Lett.
47
,
1301
(
1985
).
13.
J. R.
Waldrop
,
Appl. Phys. Lett.
47
,
1301
(
1985
).
14.
S. J.
Eglash
,
N.
Newman
,
S.
Pan
,
D.
Mo
,
K.
Shenai
,
W. E.
Spicer
,
F. A.
Ponce
, and
D. M.
Collins
,
J. Appl. Phys.
61
,
5159
(
1987
).
15.
J. R.
Waldrop
and
R. W.
Grant
,
J. Vac. Sci. Technol. B
5
,
1015
(
1987
).
16.
M. T.
Schmidt
,
D. V.
Podlesnik
,
C. F.
Yu
,
X.
Wu
,
R. M.
Osgood
, Jr.
, and
E. S.
Yang
,
J. Vac. Sci. Technol. B
6
,
1436
(
1988
).
17.
S. J.
Pearton
,
F.
Ren
,
C. R.
Abernathy
,
W. S.
Hobson
,
S. N. G.
Chu
, and
J.
Kovalchick
,
Appl. Phys. Lett.
55
,
1342
(
1989
).
18.
M.
Eizenberg
,
A. C.
Callegari
,
D. K.
Sadana
,
H. J.
Hovel
, and
T. N.
Jackson
,
Appl. Phys. Lett.
54
,
24
(
1989
).
19.
S. A.
Chambers
,
V. A.
Loebs
, and
D. H.
Doyle
,
J. Vac. Sci. Technol. B
8
,
985
(
1990
).
20.
S. A.
Chambers
,
J. Vac. Sci. Technol. A
11
,
860
(
1993
).
21.
T. L.
Cheeks
,
T.
Sands
,
R. E.
Nahory
,
J. P.
Harbison
,
H. L.
Gilchrist
, and
V. G.
Keramidas
,
J. Electron. Mater.
20
,
881
(
1991
).
22.
M.
Tanaka
,
T.
Nishinaga
,
N.
Ikarashi
, and
H.
Shimada
,
J. Appl. Phys.
75
,
885
(
1994
).
23.
C. A.
Mead
,
Solid-State Electron.
9
,
1023
(
1966
).
24.
Yu. A.
Gol’dberg
,
T. Yu.
Rafiev
,
B. V.
Tsarankov
, and
Yu. P.
Yakovlev
,
Sov. Phys. Semicond.
6
,
398
(
1972
).
25.
J. S.
Best
,
Appl. Phys. Lett.
34
,
522
(
1979
).
26.
K.
Okamoto
,
C. E. C.
Wood
, and
L. F.
Eastman
,
Appl. Phys. Lett.
38
,
636
(
1981
).
27.
M.
Eizenberg
,
M.
Heiblum
,
M. I.
Nathan
,
N.
Braslau
, and
P. M.
Mooney
,
J. Appl. Phys.
61
,
1516
(
1987
).
28.
C. J.
Palmstro/m
,
B.-O.
Fimland
,
T.
Sands
,
K. C.
Garrison
, and
R. A.
Bartynski
,
J. Appl. Phys.
65
,
4753
(
1989
).
29.
M.
Missous
,
W. S.
Truscott
, and
K. E.
Singer
,
J. Appl. Phys.
68
,
2239
(
1990
).
30.
T.
Sands
,
W. K.
Chan
,
C. C.
Chang
,
E. W.
Chase
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
52
,
1338
(
1988
).
31.
T.
Sands
,
Appl. Phys. Lett.
52
,
197
(
1988
).
32.
S. A.
Chambers
,
J. Vac. Sci. Technol. B
7
,
737
(
1989
).
33.
C.-P.
Chen
,
C.-H.
Jan
,
Y. A.
Chang
, and
T. F.
Kuech
,
Mater. Res. Soc. Symp. Proc.
281
,
683
(
1993
).
34.
C.-P.
Chen
,
Y. A.
Chang
, and
T. F.
Kuech
,
Appl. Phys. Lett.
64
,
3485
(
1994
).
35.
C.-P.
Chen
,
Y. A.
Chang
, and
T. F.
Kuech
,
J. Vac. Sci. Technol. A
12
,
1915
(
1994
).
36.
Y.
Sekino
,
T.
Kimura
,
K.
Inokuchi
,
Y.
Sano
, and
M.
Sakuta
,
Jpn. J. Appl. Phys., Part 2
27
,
L2183
(
1988
).
37.
T. S.
Huang
,
J. G.
Peng
, and
C. C.
Lin
,
Appl. Phys. Lett.
61
,
3017
(
1992
).
38.
T. S.
Huang
,
J. G.
Peng
, and
C. C.
Lin
,
J. Vac. Sci. Technol. B
11
,
756
(
1993
).
39.
T. S.
Huang
and
S. M.
Jean
,
J. Appl. Phys.
75
,
7519
(
1994
).
40.
T.
Lalinsky
,
D.
Gregusová
,
Z.
Mozolová
,
J.
Breza
, and
P.
Vogrincic
,
Appl. Phys. Lett.
64
,
1818
(
1994
).
41.
T.
Lalinsky
,
J.
Osvald
,
D.
Machajdı̂k
,
J.
Sisolák
,
G.
Constantinidis
, and
A. P.
Kobzev
,
J. Vac. Sci. Technol. B
14
,
657
(
1996
).
42.
T. S.
Huang
and
J. G.
Peng
,
J. Appl. Phys.
78
,
5739
(
1995
).
43.
C.-P.
Chen
,
Y. A.
Chang
, and
T. F.
Kuech
,
J. Appl. Phys.
77
,
4777
(
1995
).
44.
C.-H. Jan, Ph.D. thesis, University of Wisconsin–Madison, 1990.
45.
Y. A.
Chang
,
Mater. Res. Soc. Symp. Proc.
260
,
43
(
1992
).
46.
Y. A.
Chang
,
Metall. Mater. Trans. B
25B
,
789
(
1994
).
47.
Y. A. Chang, C.-H. Jan, and C.-P. Chen, U.S. Patent No. 5,516,725 (1996).
48.
D.
Swenson
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
84
,
4332
(
1998
).
49.
C.-P.
Chen
,
C.-H.
Jan
, and
Y. A.
Chang
,
Mater. Res. Soc. Symp. Proc.
281
,
683
(
1993
).
50.
D. B.
Ingerly
,
D.
Swenson
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
80
,
543
(
1996
).
51.
D. B.
Ingerly
,
D.
Swenson
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
82
,
496
(
1997
).
52.
P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1991).
53.
Y. A. Chang and J. P. Neumann, in Progress in Solid-State Chemistry, edited by W. L. Worrell and G. R. Rosenblatt (Pergamon, Oxford, UK, 1982), Vol. 14, p. 221.
54.
T. Y.
Tan
,
U.
Gösele
, and
S.-F.
Yu
,
Crit. Rev. Solid State Mater. Sci.
17
,
47
(
1991
).
55.
S.
Shankar
and
L. L.
Seigle
,
Metall. Trans. A
9
,
1467
(
1978
).
56.
S.-T. Kim, Ph.D. thesis, University of Wisconsin–Madison, 1996.
57.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
58.
O. Kubaschewski, E. L. Evans, and C. B. Alcock, Metallurgical Thermochemistry, 4th ed. (Pergamon, London, 1967).
59.
A. E. Schultz, Ph.D. thesis, University of Wisconsin–Madison, 1988.
This content is only available via PDF.
You do not currently have access to this content.