The critical dimension (CD) limits of conventional optical lithography follow directly from the low-pass filter characteristics of the imaging optical system (|k|≲2πNA where λ is the optical wavelength and NA the numerical aperture). In contrast, the linear systems limits of optics extend to spatial frequencies of 4π/λ (interference between counterpropagating beams at grazing incidence). Imaging interferometric lithography is introduced as a technique to approach this linear systems limit while retaining the arbitrary pattern capability of an imaging optical system. Multiple, wavelength-division-multiplexed exposures are used, each exposure recording a different portion of frequency space. A conventional, coherent illumination exposure provides the low frequency information, within the lens passband. Offset exposures provide the high spatial frequency information. Off-axis illumination shifts a portion of the high spatial frequency diffraction from the mask into the lens passband and interference with a reference beam resets the frequencies once they are transmitted through the optical system. For a typical x-y geometry pattern, offset exposures in the x and y directions provide a sufficient coverage of frequency space. Model calculations illustrate that the imaging capabilities of imaging interferometric lithography (IIL) for dense features extend to ∼λ/3 (130 nm at I line; 65 nm at an ArF exposure wavelength). Initial experiments are reported at I line with a modest (NA=0.04) optical system. The results are in good agreement with the model calculations. A resolution enhancement of ∼3× from dense 6 μm CDs for a conventional, coherent illumination exposure to ∼dense 2 μm CDs for an IIL exposure sequence is demonstrated.

1.
M. D.
Levenson
,
N. S.
Viswanathan
, and
R. A.
Simpson
,
IEEE Trans. Electron Devices
ED-29
,
1828
(
1982
).
2.
A.
Nakae
,
K.
Kamon
,
T.
Hanawa
,
K.
Moriizumi
, and
H.
Tanabe
,
Jpn. J. Appl. Phys., Part 1
35
,
6396
(
1996
).
3.
K.
Kamon
,
T.
Miyamoto
,
Y.
Myoi
,
H.
Nagata
,
M.
Tanaka
, and
K.
Horie
,
Jpn. J. Appl. Phys., Part 1
30
,
3021
(
1991
).
4.
E. H.
Anderson
,
C. M.
Horowitz
, and
H. I.
Smith
,
Appl. Phys. Lett.
43
,
874
(
1983
).
5.
S. H.
Zaidi
,
S. R. J.
Brueck
,
F. M.
Schellenberg
,
R. S.
Mackay
,
K.
Uekert
, and
J. J.
Persoff
,
Proc. SPIE
3048
,
248
(
1997
).
6.
X.
Chen
,
Z.
Zhang
,
S. R. J.
Brueck
,
R. A.
Carpio
, and
J. S.
Petersen
,
Proc. SPIE
3048
,
309
(
1997
).
7.
X.
Chen
,
S. H.
Zaidi
,
S. R. J.
Brueck
, and
D. J.
Devine
,
J. Vac. Sci. Technol. B
14
,
3339
(
1996
).
8.
S. H.
Zaidi
and
S. R. J.
Brueck
,
J. Vac. Sci. Technol. B
11
,
658
(
1993
).
9.
S. H.
Zaidi
,
S. R. J.
Brueck
,
T.
Hill
, and
R. N.
Shagam
,
Proc. SPIE
3331
,
406
(
1998
).
10.
S. R. J.
Brueck
,
Microlithography World
7
,
2
(
1998
).
11.
X.
Chen
and
S. R. J.
Brueck
,
Proc. SPIE
3331
,
214
(
1998
).
12.
W.
Lukosz
,
J. Opt. Soc. Am.
56
,
1463
(
1966
).
13.
H.
Fukuda
and
R. M.
von Bunau
,
J. Vac. Sci. Technol. B
14
,
4162
(
1996
).
14.
R. M.
von Bunau
,
H.
Fukuda
, and
T.
Terasawa
,
Proc. SPIE
2726
,
375
(
1996
).
15.
R. M.
von Bunau
and
H.
Fukuda
,
Jpn. J. Appl. Phys., Part 1
35
,
6400
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.