In situ sequential depositions and reactions are used to control a reaction sequence first to consume GaAs and then to release GaAs from the reaction product. The first reaction involves annealing in situ deposited Ni on molecular beam epitaxially grown GaAs (100) at 300 °C to form a Ni3GaAs/GaAs structure. Exposure of this structure to As4 results in a reaction which consumes the Ni3GaAs by the layer-by-layer formation of NiAs at the surface and epitaxially regrown GaAs at the Ni3GaAs/GaAs interface. The NiAs formation and GaAs regrowth are controlled by the As4 flux. Ni diffusion dominates both the Ni3GaAs formation and decomposition mechanisms. Reflection high-energy electron diffraction, Rutherford backscattering, x-ray diffraction, and transmission electron microscopy data are used to confirm the phase formation and reaction sequences.

1.
A.
Piotrowska
,
A.
Guivarc’h
, and
G.
Pelous
,
Solid-State Electron.
26
,
179
(
1983
).
2.
C. J. Palmstro/m and D. V. Morgan, in Gallium Arsenide Materials, Devices, and Circuits, edited by M. J. Howes and D. V. Morgan (Wiley, Chichester, 1985), p. 195.
3.
T.
Sands
,
V. G.
Keramidas
,
A. J.
Yu
,
K.-M.
Yu
,
R.
Gronsky
, and
J.
Washburn
,
J. Mater. Res.
2
,
262
(
1987
).
4.
T.
Sands
,
Mater. Sci. Eng., B
1
,
289
(
1989
).
5.
T.
Sands
,
J. Met.
38
,
31
(
1986
).
6.
R.
Beyers
,
K. B.
Kim
, and
R.
Sinclair
,
J. Appl. Phys.
61
,
2195
(
1987
).
7.
R.
Schmid-Fetzer
,
J. Electron. Mater.
17
,
193
(
1988
).
8.
R.
Guérin
and
A.
Guivarc’h
,
J. Appl. Phys.
66
,
2122
(
1989
).
9.
X. Y.
Zheng
,
J. C.
Lin
,
D.
Swenson
,
K. C.
Hsieh
, and
Y. A.
Chang
,
Mater. Sci. Eng., B
5
,
63
(
1989
).
10.
D. B.
Ingerly
,
D.
Swenson
,
C.-H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
80
,
543
(
1996
).
11.
M.
Ogawa
,
Thin Solid Films
70
,
181
(
1980
).
12.
T. G. Finstad and J. S. Johannessen, Proceedings of the 10th Nordic Semiconductor Meeting, Elsinore, Denmark, 9–11 June 1982, I4:1.
13.
S. H.
Chen
,
C. B.
Carter
,
C. J.
Palmstro/m
, and
T.
Ohashi
,
Mater. Res. Soc. Symp. Proc.
54
,
361
(
1986
).
14.
S. H.
Chen
,
C. B.
Carter
,
C. J.
Palmstro/m
, and
T.
Ohashi
,
Appl. Phys. Lett.
48
,
803
(
1986
).
15.
T.
Sands
,
V. G.
Keramidas
,
J.
Washburn
, and
R.
Gronsky
,
Appl. Phys. Lett.
48
,
402
(
1986
).
16.
A.
Lahav
,
M.
Eizenberg
, and
Y.
Komem
,
J. Appl. Phys.
60
,
991
(
1986
).
17.
D. J.
Chadi
,
J. Vac. Sci. Technol. A
5
,
834
(
1987
).
18.
T.
Sands
,
Appl. Phys. Lett.
52
,
197
(
1988
).
19.
S. H.
Chen
,
C. B.
Carter
, and
C. J.
Palmstro/m
,
J. Mater. Res.
3
,
1385
(
1988
).
20.
C. H.
Jan
,
D.
Swenson
,
X. Y.
Zheng
,
J. C.
Lin
, and
Y. A.
Chang
,
Acta Metall. Mater.
39
,
303
(
1991
).
21.
R.
Guerin
and
A.
Guivarc’h
,
J. Appl. Phys.
82
,
493
(
1997
).
22.
D. B.
Ingerly
,
D.
Swenson
,
C. H.
Jan
, and
Y. A.
Chang
,
J. Appl. Phys.
82
,
496
(
1997
).
23.
A.
Guivarc’h
,
R.
Guérin
,
J.
Caulet
,
A.
Poudoulec
, and
J.
Fontenille
,
J. Appl. Phys.
66
,
2129
(
1989
).
24.
T.
Sands
,
E. D.
Marshall
, and
L. C.
Wang
,
J. Mater. Res.
3
,
914
(
1988
).
25.
L. C.
Wang
,
B.
Zhang
,
F.
Fang
,
E. D.
Marshall
,
S. S.
Lau
,
T.
Sands
, and
T.
Kuech
,
J. Mater. Res.
3
,
922
(
1988
).
26.
T.
Sands
,
J. P.
Harbison
,
W. K.
Chan
,
S. A.
Schwarz
,
C. C.
Chang
,
C. J.
Palmstro/m
, and
V. G.
Keramidas
,
Appl. Phys. Lett.
52
,
1216
(
1988
).
27.
L. C.
Wang
,
Mater. Res. Soc. Symp. Proc.
319
,
93
(
1994
).
28.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
15
,
227
(
1986
).
29.
C. J.
Palmstro/m
,
C. C.
Chang
,
A.
Yu
,
G. J.
Galvin
, and
J. W.
Mayer
,
J. Appl. Phys.
62
,
3755
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.