Next generation rf amplifiers, in particular the inductive output amplifiers (IOAs), will require electron sources characterized by high current density, high brightness, low emittance, and the ability to be emission gated. The strong interaction between the beam and the resonant or synchronous electromagnetic field may enable compact, highly efficient, and moderate gain X-band power booster amplifiers. An analysis of amplifier demands on generic emitter candidates is provided. Of the emitter candidates available, two (namely, field emitter arrays and wide-band-gap semiconductors) are amenable to an analysis predicated on a simple model of field emission from hyperbolas and ellipsoids. The simple model is used to investigate two problems of critical concern: for field emitter arrays (FEAs), we will investigate the conditions under which important space charge effects exist, and from the model predict optimum FEA performance characteristics for rf IOAs; for wide-band-gap materials, the simple model identifies parameters which limit the maximum electron transport across a metal-semiconductor interface, thereby limiting current flow.

1.
See Vacuum Electronics Annual Review Abstracts (Palisades Institute for Research Services, Inc. 1996), which are the conference proceedings of the joint Monterey Power Tube Conference and the Vacuum Electronics Annual Review, Naval Postgraduate School, Monterey, CA, May 21–23, 1996.
2.
J. A. Arnaud, Encyclopedia of Physics, 2nd ed., edited by R. G. Lerner and G. L. Trigg (VCH Publishers, New York, 1991).
3.
R. H.
Abrams
and
R. K.
Parker
,
IEEE MTT-S Intl. Micr. Symp. Dig.
1
,
107
(
1993
).
4.
E. G.
Zaidman
and
M. A.
Kodis
,
IEEE Trans. Electron Devices
38
,
2221
(
1991
).
5.
J. P.
Calame
,
H. F.
Gray
, and
J. L.
Shaw
,
J. Appl. Phys.
73
,
1485
(
1993
).
6.
M. A.
Kodis
,
K. L.
Jensen
,
E. G.
Zaidman
,
B.
Goplen
, and
D. N.
Smithe
,
IEEE Trans. Plasma Sci.
24
,
970
(
1996
).
7.
K. L. Jensen, E. G. Zaidman, K. Nguyen, M. A. Kodis, and M. Garven, International Conference on Plasma Science (IEEE-ICOPS), San Diego, CA, May 19–22, 1997.
8.
K. L.
Jensen
,
R. H.
Abrams
, and
R. K.
Parker
,
J. Vac. Sci. Technol. B
16
,
749
(
1998
).
9.
D. N. Smithe, B. Goplen, M. A. Kodis, and N. R. Vanderplaats, IEEE-ICOPS, Madison, WI, 1995.
10.
H. P. Freund and E. G. Zaidman, International Conference on Plasma Science (IEEE-ICOPS), San Diego, CA, May 19–22, 1997;
E. G. Zaidman and H. P. Freund, International Conference on Plasma Science (IEEE-ICOPS), Boston, MA, June, 1997.
11.
K. T. Nguyen, H. P. Freund, E. G. Zaidman, N. Vanderplaats, and M. A. Kodis, Proceedings of the 1996 Microwave Power Tube Conference, May 1996.
12.
The CASSANDRA code has been validated by comparison to the 1-D TWT code CHRISTINE developed at NRL: T. Antonsen and B. Levush, “CHRISTINE: A Multifrequency Parametric Simulation Code for Traveling Wave Tube Amplifiers,” NRL Technical Report NRL/FR/6840–97-9845, May 5, 1997.
13.
K. L.
Jensen
,
J. Appl. Phys.
83
,
7982
(
1998
).
14.
E. E. Martin, F. M. Charbonnier, W. W. Dolan, W. P. Dyke, H. W. Pitman, and J. K. Trolan, Wright Air Development Division Technical Report 59–20, January 1960
(see also
J. P.
Barbour
,
W. W.
Dolan
,
J. K.
Trolan
,
E. E.
Martin
, and
W. P.
Dyke
,
Phys. Rev.
92
,
45
(
1953
));
W. P.
Dyke
,
J. K.
Trolan
,
E. E.
Martin
, and
J. P.
Barbour
,
Phys. Rev.
92
,
1043
(
1953
).
15.
H. G.
Kosmahl
,
IEEE Trans. Electron Devices
38
,
1534
(
1991
).
16.
P. H.
Cutler
,
J.
He
,
N. M.
Miskovsky
,
T. E.
Sullivan
, and
B.
Weiss
,
J. Vac. Sci. Technol. B
11
,
387
(
1993
).
17.
D.
Nicolaescu
,
J. Vac. Sci. Technol. B
11
,
392
(
1993
).
18.
K. L.
Jensen
,
E. G.
Zaidman
,
M. A.
Kodis
,
B.
Goplen
, and
D. N.
Smithe
,
J. Vac. Sci. Technol. B
14
,
1942
(
1996
);
K. L.
Jensen
,
E. G.
Zaidman
,
M. A.
Kodis
,
B.
Goplen
, and
D. N.
Smithe
,
J. Vac. Sci. Technol. B
14
,
1947
(
1996
).
19.
K. L.
Jensen
,
P.
Mukhopadhyay-Phillips
,
E. G.
Zaidman
,
K.
Nguyen
,
M. A.
Kodis
,
L.
Malsawma
, and
C.
Hor
,
Appl. Surf. Sci.
111
,
204
(
1997
).
20.
K. L.
Jensen
,
M. A.
Kodis
,
R. A.
Murphy
, and
E. G.
Zaidman
,
J. Appl. Phys.
82
,
845
(
1997
).
21.
G. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic, New York, 1970). See in particular Chapter 12, Section 11 (Legendre Functions: Application to Spheroidal Coordinate Systems).
22.
A. Modinos, Field, Thermionic, and Secondary Electron Spectroscopy (Plenum, New York, 1984).
23.
Heinz K. Henisch, International Series of Monographs on Physics No. 70 (Clarendon, Oxford, 1984).
24.
See III-Nitride, SiC and Diamond Materials for Electron Devices, Symposium Proceedings of the MRS No. 423, edited by D. K. Gaskill, C. D. Brandt, and R. J. Nemanich (1996).
25.
R. P. Feynman, Frontiers in Physics (Benjamin Cummings, Reading, MA, 1983), Vol. 36, and references therein.
26.
N. D.
Lang
and
W.
Kohn
,
Phys. Rev. B
1
,
4555
(
1970
).
27.
F. Garı́a-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces (Cambridge University Press, Cambridge, 1979).
28.
M.
van Schilfgaarde
,
A.
Sher
, and
A.-B.
Chen
,
J. Cryst. Growth
178
,
8
(
1997
).
29.
K. L.
Jensen
,
E. G.
Zaidman
,
M. A.
Kodis
,
B.
Goplen
, and
D. N.
Smithe
,
J. Vac. Sci. Technol. B
14
,
1942
(
1996
);
K. L.
Jensen
,
E. G.
Zaidman
,
M. A.
Kodis
,
B.
Goplen
, and
D. N.
Smithe
,
J. Vac. Sci. Technol. B
14
,
1947
(
1996
);
E. G.
Zaidman
,
K. L.
Jensen
, and
M. A.
Kodis
,
J. Vac. Sci. Technol. B
14
,
1994
(
1996
).
30.
Atomic units will be used throughout, and are given by electron volts (eV), femtoseconds (fs), angstroms (Å); the electron charge (e) is unity. Current density therefore has units of e/(fs Å2) and current of (e/fs). The permittivity of free space ε0=e2/4παfsℏc, where αfs=1/137.04 is the fine structure constant.
31.
W. D.
Goodhue
,
P. M.
Nitishin
,
C. T.
Harris
,
C. O.
Bozler
,
D. D.
Rathman
,
G. D.
Johnson
, and
M. A.
Hollis
,
J. Vac. Sci. Technol. B
12
,
693
(
1994
).
32.
S. T. Purcell, V. T. Binh, and R. Baptist (preprint obtained from V. T. Binh).
33.
F.
Charbonnier
,
J. Vac. Sci. Technol. B
16
,
880
(
1998
).
34.
C. K. Birdsall and W. B. Bridges, Electron Dynamics of Diode Regions (Academic, New York, 1966).
35.
H. Imura, S. Tsuida, M. Takahasi, A. Okamoto, H. Makishima, and S. Miyano, Technical Digest of the IEEE-IEDM (Washington, DC, 1997), p. 721.
36.
R. P.
Joshi
,
K. H.
Schoenbach
,
C.
Molina
, and
W. W.
Hofer
,
J. Appl. Phys.
74
,
1568
(
1993
).
37.
P. H.
Cutler
,
Z.-H.
Huang
,
N. M.
Miskovsky
,
P.
D’Ambrosio
, and
M.
Chung
,
J. Vac. Sci. Technol. B
14
,
2020
(
1996
).
38.
M. W.
Geis
,
J. C.
Twichell
, and
T. M.
Lysczarz
,
J. Vac. Sci. Technol. B
14
,
2060
(
1996
).
39.
P.
Lerner
,
P. H.
Cutler
, and
N. M.
Miskovsky
,
J. Phys. IV
C5
,
39
(
1996
).
40.
L. Eyges, The Classical Electromagnetic Field (Dover, New York, 1972).
41.
K. L.
Jensen
,
J. Vac. Sci. Technol. B
13
,
516
(
1995
).
42.
N.
Pupeter
,
A.
Göhl
,
T.
Habermann
,
E.
Mahner
,
G.
Müller
,
H.
Piel
,
Ph.
Niedermann
, and
W.
Hänni
,
J. Vac. Sci. Technol. B
14
,
2056
(
1996
).
43.
W. B.
Choi
,
J.
Liu
,
M. T.
McClure
,
A. F.
Myers
,
V. V.
Zhirnov
,
J. J.
Cuomo
, and
J. J.
Hren
,
J. Vac. Sci. Technol. B
14
,
2050
(
1996
).
44.
E. I.
Givargizov
,
V. V.
Zhirnov
,
A. V.
Kuznetsov
, and
P. S.
Plekhanov
,
J. Vac. Sci. Technol. B
14
,
2030
(
1996
).
45.
P. H.
Cutler
,
Z.-H.
Huang
,
N. M.
Miskovsky
,
P.
D’Ambrosio
, and
M.
Chung
,
J. Vac. Sci. Technol. B
14
,
2020
(
1996
).
46.
W.
Zhu
,
G. P.
Kochanski
,
S.
Jin
, and
L.
Seibles
,
J. Vac. Sci. Technol. B
14
,
2011
(
1996
).
47.
W. P.
Kang
,
J. I.
Davidson
,
M.
Howell
,
B.
Bhuva
,
D. L.
Kinser
,
D. V.
Kerns
,
Q.
Li
, and
J. F.
Xu
,
J. Vac. Sci. Technol. B
14
,
2068
(
1996
).
48.
See, for example, the discussion in Ref. 23 (H. K. Henisch), p. 49.
This content is only available via PDF.
You do not currently have access to this content.