Studying the structural and photoluminescence properties of pseudomorphic Si1−yCy and Si1−x−yGexCy multiple quantum well (QW) structures on (001) Si substrates offer a quantitative characterization of the band gap and band offset shifts caused by C alloying for y<3%. The main features of Si1−yCy alloys, which are a reduced lattice constant and a strong lowering of the conduction band energy, promise that C may serve as a counterpart to Ge in Si heteroepitaxy. The photoluminescent properties of Si1−yCy and SiGeC QWs are comparable to SiGe. Novel pseudomorphic Si1−yCy/SiGe coupled QW structures and Si1−yCy/Ge quantum dot structures result in a strong enhancement of the photoluminescent efficiency. The ternary SiGeC material system offers a higher degree of freedom in strain and band edge engineering of structures. We focus on our recent results on Si1−yCy and SiGeC QW layers embedded in Si concerning the growth by solid-source molecular beam epitaxy, structural properties, thermal stability, optical properties, and band offsets. The prospects of SiGeC alloys for realization of optoelectronic structures are discussed. First characteristics from 0.75 μmp-channel modulation-doped field-effect transistor devices containing an active SiGeC layer demonstrate good electrical properties.

1.
D. J.
Eaglesham
and
M.
Cerullo
,
Phys. Rev. Lett.
64
,
1943
(
1990
).
2.
J.
Tersoff
,
C.
Teichert
, and
M. G.
Lagally
,
Phys. Rev. Lett.
76
,
1675
(
1996
).
3.
U.
Menczigar
,
G.
Abstreiter
,
J.
Olajos
,
H.
Grimmeiss
,
H.
Kibbel
,
H.
Presting
, and
E.
Kasper
,
Phys. Rev. B
47
,
4099
(
1993
).
4.
F.
Schäffler
,
M.
Wachter
,
H. J.
Herzog
,
K.
Thonke
, and
R.
Sauer
,
J. Cryst. Growth
127
,
411
(
1993
).
5.
K.
Ismail
,
F. K.
LeGoues
,
K. L.
Saenger
,
M.
Arafa
,
J. O.
Chu
,
P. M.
Mooney
, and
B. S.
Meyerson
,
Phys. Rev. Lett.
73
,
3447
(
1994
).
6.
K.
Ismail
,
J. O.
Chu
, and
B. S.
Meyerson
,
Appl. Phys. Lett.
64
,
3124
(
1994
).
7.
S. S.
Iyer
,
G. L.
Patton
,
J. M. C.
Stork
,
B. S.
Meyerson
, and
D. L.
Harame
,
IEEE Trans. Electron Devices
ED-36
,
2043
(
1989
).
8.
S. S.
Iyer
,
K.
Eberl
,
M. S.
Goorsky
,
F. K.
LeGoues
,
J. C.
Tsang
, and
F.
Cardone
,
Appl. Phys. Lett.
60
,
356
(
1992
).
9.
K.
Eberl
,
S. S.
Iyer
,
S.
Zollner
,
J. C.
Tsang
, and
F. K.
LeGoues
,
Appl. Phys. Lett.
60
,
3033
(
1992
).
10.
K.
Brunner
,
W.
Winter
,
K.
Eberl
, and
N. Y.
Jin-Phillipp
,
Appl. Phys. Lett.
69
,
91
(
1996
).
11.
K.
Brunner
,
K.
Eberl
, and
W.
Winter
,
Phys. Rev. Lett.
76
,
303
(
1996
).
12.
D. C.
Houghton
,
G. C.
Aers
,
N. L.
Rowell
,
K.
Brunner
,
W.
Winter
, and
K.
Eberl
,
Phys. Rev. Lett.
78
,
2441
(
1997
).
13.
H.
Rücker
,
M.
Methfessel
,
E.
Bugiel
, and
H. J.
Osten
,
Phys. Rev. Lett.
72
,
3578
(
1994
).
14.
A. A.
Demkov
and
O. F.
Sankey
,
Phys. Rev. B
48
,
2207
(
1993
).
15.
M. L. W.
Thewalt
,
D. A.
Harrison
,
C. F.
Reinhart
,
J. A.
Wolk
, and
H.
Lafontaine
,
Phys. Rev. Lett.
79
,
269
(
1997
).
16.
A.
St. Amour
,
C. W.
Liu
,
J. C.
Sturm
,
Y.
Lacroix
, and
M. L. W.
Thewalt
,
Appl. Phys. Lett.
67
,
3915
(
1995
).
17.
K.
Brunner
,
W.
Winter
, and
K.
Eberl
,
Appl. Phys. Lett.
69
,
1279
(
1996
).
18.
N.
Usami
,
F.
Issiki
,
D. K.
Nayak
,
Y.
Shiraki
, and
S.
Fukatsu
,
Appl. Phys. Lett.
67
,
524
(
1995
).
19.
K.
Rim
,
S.
Takagi
,
J. J.
Welser
,
J. L.
Hoyt
, and
J. F.
Gibbons
,
Mater. Res. Soc. Symp. Proc.
397
,
327
(
1995
).
20.
O. G.
Schmidt
,
C.
Lange
,
K.
Eberl
,
O.
Kienzle
, and
F.
Ernst
,
Appl. Phys. Lett.
71
,
2340
(
1997
).
21.
P.
Schittenhelm
,
M.
Gail
,
J.
Brunner
, and
J. F.
Nützel
,
Appl. Phys. Lett.
67
,
1292
(
1995
).
22.
P.
Zaumseil
,
G. G.
Fischer
,
K.
Brunner
, and
K.
Eberl
,
J. Appl. Phys.
81
,
6134
(
1997
).
23.
H.
Lafontaine
,
D. C.
Hougthon
,
N. L.
Rowell
, and
G. C.
Aers
,
Appl. Phys. Lett.
69
,
1444
(
1996
).
24.
M. Glück, U. König, K. Brunner, W. Winter, and K. Eberl, Proceedings of the 8th Conference Modulated Semiconductor Structures, Santa Barbara, 1997 (to be published).
25.
T.
Manku
and
A.
Nathan
,
IEEE Electron Device Lett.
12
,
704
(
1991
).
26.
H. J.
Osten
and
J.
Klatt
,
Appl. Phys. Lett.
65
,
630
(
1994
).
27.
M.
Ershov
and
V.
Ryzhii
,
J. Appl. Phys.
76
,
1924
(
1994
).
28.
W.
Faschinger
,
S.
Zerlauth
,
G.
Bauer
, and
L.
Palmetshofer
,
Appl. Phys. Lett.
67
,
3933
(
1995
).
29.
D. K.
Nayak
,
J. C. S.
Woo
,
J. S.
Park
,
K. L.
Wang
, and
K. P.
MacWilliams
,
Appl. Phys. Lett.
62
,
2853
(
1993
);
D. K.
Nayak
and
S. K.
Chun
,
Appl. Phys. Lett.
64
,
2514
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.