Radio frequency vacuum microelectronics combines the advantages of electron transport in vacuum with gated electron emission structures derived from solid-state microfabrication. The advent of practical gated vacuum emitters of micron size will have a strong impact on rf source technology. Next-generation rf amplifiers incorporating microfabricated emitters will allow amplifier designs that minimize the need for high-voltage power supplies, complex modulating circuitry, and the heavy magnets common with linear beam tubes. One attractive application for such efficient compact amplifiers is as the vacuum power booster of a microwave power module, a device that combines a solid-state preamplifier with a low-gain vacuum amplifier for efficiency. Program goals are to create a 50 W 10 GHz amplifier with 10 dB gain and efficiency exceeding 50%. We will survey the requirements placed on field emitter arrays for performance in a microwave amplifier as determined by various analyses, describe the present status of the performance of ring cathodes designed for inductive output amplifiers, i.e., the narrow-band, cavity-based klystrode under development at Varian/CPI and the wide-band, helix-based twystrode under development at NRL, and identify the challenges that remain before this new rf source technology is realized.

1.
E. G.
Zaidman
and
M. A.
Kodis
,
IEEE Trans. Electron Devices
38
,
2221
(
1991
).
2.
R. K. Parker, Vide-Sci. Tech. Applic. 52, 366 (1996).
3.
J. P. Calame, H. F. Gray, and J. L. Shaw, Appl. Phys. 73, 1485 (1993).
4.
M. A.
Kodis
,
K. L.
Jensen
,
E. G.
Zaidman
,
B.
Goplen
, and
D. N.
Smithe
,
IEEE Trans. Plasma Sci.
24
,
970
(
1996
).
5.
K. Nguyen, M. A. Kodis, and M. Garven, Intl. Conf. on Plasma Science, San Diego, CA, 19–22 May 1997.
6.
R. H. Abrams and R. K. Parker, IEEE MTT-S Intl. Micr. Symp. Dig. 1, 107 (1993).
7.
A related figure of merit derived by MIT accounts for the input matching and resistive losses; as with the Kodis figure of merit, it shares a factor of gm/2πC. M. Hollis and R. A. Murphy (private communication).
8.
K. L.
Jensen
,
M. A.
Kodis
,
R. A.
Murphy
, and
E. G.
Zaidman
,
J. Appl. Phys.
82
,
845
(
1997
);
K. L. Jensen, J. E. Yater, E. G. Zaidman, M. A. Kodis, and A. Shih, Technical Digest of the 10th IVMC (EDIRAK, Seoul, Korea, 1997), p. 186.
9.
A. V.
Haeff
and
L. S.
Nergaard
,
Proc. IRE
28
,
126
(
1940
).
10.
D. H.
Preist
and
M. B.
Schrader
,
Proc. IEEE
20
,
1318
(
1982
).
11.
Measurements performed by CPI (M. Green) as of March 1997.
12.
A. J.
Lichtenberg
,
IRE Trans. Electron Devices
ED-9
,
345
(
1962
).
13.
M. A. Kodis et al., Tech. Digest of the 1991 IEEE-IEDM, Washington, DC, 1991, p. 589.
This content is only available via PDF.
You do not currently have access to this content.