Dense, periodic arrays of holes and troughs have been fabricated in silicon, silicon nitride, and germanium. The holes are approximately 20 nanometers (nm) wide, 20 nm deep, spaced 40 nm apart, and uniformly patterned with 3×1012 holes on a three inch wafer. To access this length scale, self-assembling resists were synthesized to produce either a layer of hexagonally ordered polyisoprene (PI) spheres or parallel cylinders of polybutadiene (PB) in a polystyrene (PS) matrix. The PI spheres or PB cylinders were then degraded and removed with ozone to produce a PS mask for pattern transfer by fluorine-based reactive ion etching. A PS mask of spherical voids was used to fabricate a lattice of holes and a mask of cylindrical voids was used to produce parallel troughs. This technique accesses a length scale difficult to produce by conventional lithography and opens a route for the patterning of surfaces via self-assembly.

1.
H.
Masuda
and
F.
Fukuda
,
Science
268
,
1466
(
1995
).
2.
M. J.
Lercel
,
M.
Rooks
,
R. C.
Tiberio
,
H. G.
Craighead
,
C. W.
Sheen
,
A. N.
Parikh
, and
D. L.
Allara
,
J. Vac. Sci. Technol. B
13
,
1139
(
1995
).
3.
M. H.
Kryder
,
Thin Solid Films
216
,
174
(
1992
).
4.
W.
Kang
,
H. L.
Stormer
,
L. N.
Pfeiffer
,
K. W.
Baldwin
, and
K. W.
West
,
Phys. Rev. Lett.
23
,
3850
(
1993
).
5.
D.
Hofstadter
,
Phys. Rev. B
14
,
2239
(
1976
).
6.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
,
Phys. Rev. Lett.
49
,
405
(
1982
).
7.
D.
Weiss
,
M. L.
Roukes
,
A.
Menschig
,
P.
Grambow
,
K.
von Klitzing
, and
G.
Weimann
,
Phys. Rev. Lett.
66
,
2790
(
1991
).
8.
T. L.
Morkved
,
M.
Lu
,
A. M.
Urbas
,
E. E.
Ehrichs
,
H. M.
Jaeger
,
P.
Mansky
, and
T. P.
Russell
,
Science
273
,
931
(
1996
).
9.
T. L.
Morkved
,
P.
Wiltzius
,
H. M.
Jaeger
,
D. G.
Grier
, and
T. A.
Witten
,
Appl. Phys. Lett.
64
,
422
(
1994
).
10.
P.
Mansky
,
C. K.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
N.
Yao
,
Appl. Phys. Lett.
68
,
2586
(
1996
).
11.
P.
Mansky
,
P.
Chaikin
, and
E. L.
Thomas
,
J. Mater Sci.
30
,
1987
(
1995
).
12.
Z.
Li
,
W.
Zhao
,
Y.
Liu
,
M. H.
Rafailovich
,
J.
Sokolov
,
K.
Khougaz
,
A.
Eisenberg
,
R. B.
Lennox
, and
G.
Krausch
,
J. Am. Chem. Soc.
118
,
10892
(
1992
).
13.
F. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1990
).
14.
C. Harrison, M. Park, P. M. Chaikin, R. A. Register, D. H. Adamson, and N. Yao, Polymer (in press).
15.
Preliminary studies examining the solubility of polystyrene thin films (where thin is defined to be approximately the radius of gyration) and insolubility of polydiene thin films that have been annealed on silicon wafers with native oxides indicate that polydienes interact more strongly with the native oxide. For more information on silica-polydiene interactions, see Refs. 16 and 17.
16.
A.
Ahagon
and
A. N.
Gent
,
J. Polym. Sci., Polym. Phys. Ed.
13
,
1285
(
1975
).
17.
R. A. L.
Jones
,
L. J.
Norton
,
K. R.
Shull
,
E. J.
Kramer
,
G. P.
Felcher
,
A.
Karim
, and
L. J.
Fetters
,
Macromolecules
25
,
2539
(
1992
).
18.
M.
Park
,
C.
Harrison
,
P. M.
Chaikin
,
R. A.
Register
, and
D. H.
Adamson
,
Science
276
,
1401
(
1997
).
19.
M.
Morton
and
L. J.
Fetters
,
Rubber Chem. Technol.
48
,
359
(
1975
).
20.
S.D. Razumovskii and G.E. Zaikov, Ozone and its Reactions with Organic Compounds (Elsevier, New York, 1984), p. 300.
21.
Spontaneous decomposition of gaseous ozone or ozone dissolved in water takes place within hours. The exact time depends on purity, temperature, concentration, and surface of container. For more information about ozone generation and decomposition, see R.G. Rice and A. Netzter, Handbook of Ozone Technology and Applications (Ann Arbor Science, Ann Arbor, Michigan, 1982);
B. Langlais, D. Reckhow, and D. Brink, Ozone in Water Treatment,Application and Engineering (Lewis, Chelsea, Michigan, 1991).
22.
J. Brandrup and E. H. Immergut, Polymer Handbook (Wiley, New York, 1989), p. VI/438.
23.
J. S.
Lee
,
A.
Hirao
, and
S.
Nakahama
,
Macromolecules
22
,
2602
(
1989
).
24.
N. Grassie and G. Scott, Polymer Degradation and Stabilisation (Cambridge University, New York, 1985), p. 195.
25.
A. E. Rawson, Water Water Eng., p. 102 (March 1953).
26.
Silicon nitride membranes have been used previously for imaging of polymer microstructures, see Ref. 8.
27.
The films examined in this section were spin coated at an average thickness of 1.5 layers, producing a morphology of islands and holes. For depth profiling, regions that consisted of one layer of cylinders were selected. For information on islands and holes, see for example,
G.
Coulon
and
D.
Ausserre
,
J. Phys. France
51
,
777
(
1990
).
28.
The parameters used were 55 mTorr, 20 sccm of CF4, and 0.35 W/cm2. A bias of 505 V developed between the anode and cathode.
29.
See, for instance, J. P. Spatz, A. Roescher, and M. Moller, Adv. Mater. 8, 337 (1996);
J. P. Spatz, S. Mosmer, and M. Moller, Chem. Eur. J. 2, 1552 (1996).
30.
Selectivity is increased by plasma polymerization. See, for example, H. Yasuda, Plasma Polymerization (Academic, New York, 1985).
This content is only available via PDF.
You do not currently have access to this content.