We present a new technique for performing lithography with scanning probes that has several advantages over standard methods. This hybrid lithography system combines the key features of the atomic force microscope (AFM) and the scanning tunneling microscope (STM) by incorporating two independent feedback loops, one to control current and one to control force. We demonstrate a minimum resolution of 41 nm and nanometer alignment capabilities. This lithography system is capable of writing continuous features over sample topography. Topography is often present in real patterning applications and poses problems for AFM and STM lithography. We report 100 nm resist features patterned over 180 nm of topography created by local oxidation of silicon. The hybrid AFM/STM system is designed as a robust scanning probe lithography tool, capable of high-speed patterning and suited for integrated circuit lithography applications.

1.
J. A.
Dagata
,
J.
Schneir
,
H. H.
Harary
,
C. J.
Evans
,
M. T.
Postek
, and
J.
Bennett
,
Appl. Phys. Lett.
56
,
2001
(
1990
).
2.
H.
Sugimura
,
T.
Uchida
,
N.
Kitamura
, and
H.
Masuhara
,
Appl. Phys. Lett.
63
,
1288
(
1993
).
3.
T.
Thundat
,
L. A.
Nagahara
,
P. I.
Oden
,
S. M.
Lindsay
,
M. A.
George
, and
W. S.
Glaunsinger
,
J. Vac. Sci. Technol. A
8
,
3537
(
1990
).
4.
H. J.
Song
,
M. J.
Rack
,
K.
Abugharbieh
,
S. Y.
Lee
,
V.
Khan
,
D. K.
Ferry
, and
D. R.
Allee
,
J. Vac. Sci. Technol. B
12
,
3720
(
1994
).
5.
E. S.
Snow
,
D.
Park
, and
P. M.
Campbell
,
Appl. Phys. Lett.
69
,
269
(
1996
).
6.
Snow used a short pulse to oxidize silicon and from the length of the pulse inferred a maximum writing speed of 1 mm/s. See
E. S.
Snow
and
P. M.
Campbell
Appl. Phys. Lett.
64
,
1932
(
1994
). From our experience, however, oxidation does not occur at scan speeds in excess of about 10 μm/s.
7.
S. C.
Minne
,
S. R.
Manalis
,
A.
Atalar
, and
C. F.
Quate
,
J. Vac. Sci. Technol. B
14
,
2456
(
1996
).
8.
S. W.
Park
,
H. T.
Soh
,
C. F.
Quate
, and
S.-I.
Park
,
Appl. Phys. Lett.
67
,
2415
(
1995
).
9.
E. S.
Snow
and
P. M.
Campbell
,
Appl. Phys. Lett.
66
,
1388
(
1995
).
10.
S. C.
Minne
,
H. T.
Soh
,
P.
Flueckiger
, and
C. F.
Quate
,
Appl. Phys. Lett.
66
,
703
(
1995
).
11.
K.
Matsumoto
,
M.
Ishii
,
K.
Segawa
,
Y.
Oka
,
B. J.
Vartanian
, and
J. S.
Harris
,
Appl. Phys. Lett.
68
,
34
(
1996
).
12.
M. A.
McCord
and
R. F. W.
Pease
,
J. Vac. Sci. Technol. B
6
,
293
(
1988
).
13.
C. R. K.
Marrian
,
F. K.
Perkins
,
S. L.
Brandow
,
T. S.
Koloski
,
E. A.
Dobisz
, and
J. M.
Calvert
,
Appl. Phys. Lett.
64
,
390
(
1994
).
14.
F. K.
Perkins
,
E. A.
Dobisz
, and
C. R. K.
Marrian
,
J. Vac. Sci. Technol. B
11
,
2597
(
1993
).
15.
C. R. K.
Marrian
and
E. A.
Dobisz
,
Proc. SPIE
1671
,
166
(
1992
).
16.
C. R. K.
Marrian
,
E. A.
Dobisz
, and
R. J.
Colton
,
J. Vac. Sci. Technol. A
8
,
3563
(
1990
).
17.
A.
Majumdar
,
P. I.
Oden
,
J. P.
Carrejo
,
L. A.
Nagahara
,
J. J.
Graham
, and
J.
Alexander
,
Appl. Phys. Lett.
61
,
2293
(
1992
).
18.
I. Y.
Yang
,
H.
Hu
,
L. T.
Su
,
V. V.
Wong
,
M.
Burkhardt
,
E. E.
Moon
,
J. M.
Carter
,
D. A.
Antoniadis
,
H. J.
Smith
,
K. W.
Rhee
, and
W.
Chu
,
J. Vac. Sci. Technol. B
12
,
4051
(
1994
).
19.
A.
Classen
,
S.
Kuhn
,
J.
Straka
, and
A.
Forchel
,
Microelectron. Eng.
17
,
21
(
1992
).
20.
Y.
Martin
and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
64
,
2498
(
1994
).
21.
K.
Wilder
,
B.
Singh
, and
W. H.
Arnold
,
Proc. SPIE
2725
,
1996
().
22.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London
114
,
173
(
1928
).
23.
L. F.
Thompson
,
L. E.
Stillwagon
, and
E. M.
Doerries
,
J. Vac. Sci. Technol.
15
,
938
(
1978
).
24.
L. E.
Ocola
,
D. S.
Fryer
,
G.
Reynolds
,
A.
Krasnoperova
, and
F.
Cerrina
,
Appl. Phys. Lett.
68
,
717
(
1996
).
25.
W. H.
Arnold
,
B.
Singh
, and
K.
Phan
,
Solid State Technol.
,
139
(
1989
).
26.
L.
Bauch
,
U.
Jagdhold
, and
M.
Bottcher
,
Microelectron. Eng.
30
,
53
(
1996
).
27.
D. Sarid, Scanning Force Microscopy (Oxford University Press, New York, 1991).
This content is only available via PDF.
You do not currently have access to this content.