We have developed a stable (<1% drift/h at 1 Å/s), fast (∼200 ms), sensitive (S/N∼10–200 at 1 Å/s) evaporation rate monitor for controlling electron beam sources. Based on dual beam atomic absorption spectroscopy (AAS), in which a reference arm compensates for drift in the light source and signal detection apparatus, this technique is very wavelength and hence element specific, allowing many elements to be simultaneously and independently monitored. Furthermore, the system can operate at very high background gas pressures, as well as under ultrahigh vacuum conditions. Also, because only the light must enter the vacuum chamber and pass through the evaporant, minimal periodic maintenance inside the chamber is necessary. The versatility and sensitivity of this AA system make it a viable candidate for in situ monitoring of various other thin film processes, including sputtering, ion milling, and reactive ion etching.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
Article navigation
March 1994
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
North American molecular beam epitaxy conference
13−15 Sep 1993
Stanford, California (USA)
Research Article|
March 01 1994
Dual beam atomic absorption spectroscopy for controlling thin film deposition rates Available to Purchase
S. J Benerofe;
S. J Benerofe
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
C. H. Ahn;
C. H. Ahn
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
M. M. Wang;
M. M. Wang
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
K. E. Kihlstrom;
K. E. Kihlstrom
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
K. B. Do;
K. B. Do
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
S. B. Arnason;
S. B. Arnason
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
M. M. Fejer;
M. M. Fejer
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
T. H. Geballe;
T. H. Geballe
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
M. R. Beasley;
M. R. Beasley
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
R. H. Hammond
R. H. Hammond
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
Search for other works by this author on:
S. J Benerofe
C. H. Ahn
M. M. Wang
K. E. Kihlstrom
K. B. Do
S. B. Arnason
M. M. Fejer
T. H. Geballe
M. R. Beasley
R. H. Hammond
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
J. Vac. Sci. Technol. B 12, 1217–1220 (1994)
Article history
Received:
September 13 1993
Accepted:
October 11 1993
Citation
S. J Benerofe, C. H. Ahn, M. M. Wang, K. E. Kihlstrom, K. B. Do, S. B. Arnason, M. M. Fejer, T. H. Geballe, M. R. Beasley, R. H. Hammond; Dual beam atomic absorption spectroscopy for controlling thin film deposition rates. J. Vac. Sci. Technol. B 1 March 1994; 12 (2): 1217–1220. https://doi.org/10.1116/1.587048
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Science challenges and research opportunities for plasma applications in microelectronics
David B. Graves, Catherine B. Labelle, et al.
Novel low-temperature and high-flux hydrogen plasma source for extreme-ultraviolet lithography applications
A. S. Stodolna, T. W. Mechielsen, et al.
Related Content
Atomic flux measurement by diode-laser-based atomic absorption spectroscopy
J. Vac. Sci. Technol. A (September 1999)
Improved method of nonintrusive deposition rate monitoring by atomic absorption spectroscopy for physical vapor deposition processes
J. Vac. Sci. Technol. A (May 1995)
Broadband cavity-enhanced optical flux monitoring
J. Appl. Phys. (November 2024)
In situ thickness monitoring and control for highly reproducible growth of distributed Bragg reflectors
J. Vac. Sci. Technol. B (March 1994)
Diode‐laser‐based atomic absorption monitor using frequency‐modulation spectroscopy for physical vapor deposition process control
Appl. Phys. Lett. (September 1995)