Skip Nav Destination
Issues
Precision, accuracy, and uncertainty in quantitative surface analyses by Auger‐electron spectroscopy and x‐ray photoelectron spectroscopy
J. Vac. Sci. Technol. A 8, 735–763 (1990)
https://doi.org/10.1116/1.576956
Improved data acquisition and smoothing methods in high‐resolution electron energy loss spectroscopy
J. Vac. Sci. Technol. A 8, 764–768 (1990)
https://doi.org/10.1116/1.576957
An accel‐mode einzel lens with through‐lens energy analyzer for electron beam testing
J. Vac. Sci. Technol. A 8, 769–774 (1990)
https://doi.org/10.1116/1.576915
Poly(methyl methacrylate) degradation during x‐ray photoelectron spectroscopy analysis
J. Vac. Sci. Technol. A 8, 781–784 (1990)
https://doi.org/10.1116/1.576917
Angular dependence of the secondary electron emission crystal current: Effects of surface modification
J. Vac. Sci. Technol. A 8, 797–799 (1990)
https://doi.org/10.1116/1.576920
Metalorganic gas control system for gas source molecular beam epitaxy
Hideaki Ishikawa; Hideyasu Ando; Kazuhiro Kondo; Adarsh Sandhu; Eizo Miyauchi; Toshio Fujii; Satoshi Hiyamizu
J. Vac. Sci. Technol. A 8, 805–810 (1990)
https://doi.org/10.1116/1.576922
A new shutter design with a modified effusion cell for use in an ultrahigh vacuum system
J. Vac. Sci. Technol. A 8, 811–815 (1990)
https://doi.org/10.1116/1.576923
A simple molecular beam system for surface reactivity studies
J. Vac. Sci. Technol. A 8, 816–820 (1990)
https://doi.org/10.1116/1.576924
Fundamentals of ion‐beam‐assisted deposition. I. Model of process and reproducibility of film composition
J. Vac. Sci. Technol. A 8, 821–830 (1990)
https://doi.org/10.1116/1.576925
Fundamentals of ion‐beam‐assisted deposition. II. Absolute calibration of ion and evaporant fluxes
J. Vac. Sci. Technol. A 8, 831–839 (1990)
https://doi.org/10.1116/1.576926
Surface and interface characteristics of Cu films deposited by ionized cluster beam
J. Vac. Sci. Technol. A 8, 840–845 (1990)
https://doi.org/10.1116/1.576927
Radio frequency sputtering of tungsten/tungsten nitride multilayers on GaAs
J. Vac. Sci. Technol. A 8, 846–850 (1990)
https://doi.org/10.1116/1.576928
Compositional difference between films and targets in sputtering of refractory metal silicides
J. Vac. Sci. Technol. A 8, 851–854 (1990)
https://doi.org/10.1116/1.576929
Hydrocarbon coating by laser‐induced chemical vapor deposition onto microsphere target levitated by a viscous gas jet
J. Vac. Sci. Technol. A 8, 855–860 (1990)
https://doi.org/10.1116/1.576930
Scanning electron microscopy study of surface roughening induced by thermal treatment of Pt under ultrahigh vacuum
J. Vac. Sci. Technol. A 8, 868–874 (1990)
https://doi.org/10.1116/1.576932
Columnar microstructure and stress measurements in amorphous W0.75Si0.25 thin films
J. Vac. Sci. Technol. A 8, 885–890 (1990)
https://doi.org/10.1116/1.576934
Lateral dopant profiling on a 100 nm scale by scanning capacitance microscopy
J. Vac. Sci. Technol. A 8, 895–898 (1990)
https://doi.org/10.1116/1.576936
Elongated microwave electron cyclotron resonance heating plasma source
J. Vac. Sci. Technol. A 8, 908–915 (1990)
https://doi.org/10.1116/1.576895
Measurement and analysis of radio frequency glow discharge electrical impedance and network power loss
J. Vac. Sci. Technol. A 8, 916–923 (1990)
https://doi.org/10.1116/1.576896
Outgassing characteristics and microstructure of an electropolished stainless steel surface
J. Vac. Sci. Technol. A 8, 924–929 (1990)
https://doi.org/10.1116/1.576897
Outgassing properties of a commercial fiber fabric material for high temperature use in high vacuum
J. Vac. Sci. Technol. A 8, 930–932 (1990)
https://doi.org/10.1116/1.576898
Comparison of two primary pressure standards using spinning rotor gauges
J. Vac. Sci. Technol. A 8, 941–947 (1990)
https://doi.org/10.1116/1.576900
New getter clean‐up system for tritiated glove box atmosphere
J. Vac. Sci. Technol. A 8, 961–967 (1990)
https://doi.org/10.1116/1.576903
Fabrication of cylindrical, microcellular foam‐filled targets for laser‐driven experiments
J. Vac. Sci. Technol. A 8, 968–971 (1990)
https://doi.org/10.1116/1.576904
The formation of acetic anhydride by decomposition of acetic acid adsorbed on Ni(111)
J. Vac. Sci. Technol. A 8, 976–978 (1990)
https://doi.org/10.1116/1.576906
Pressure and temperature influence on CdTe thin‐film deposit by close‐spaced vapor transport technique
J. Vac. Sci. Technol. A 8, 979–983 (1990)
https://doi.org/10.1116/1.576907
Electron stimulated desorption effects in secondary ion emission from BF+2 implanted SiO2
J. Vac. Sci. Technol. A 8, 983–986 (1990)
https://doi.org/10.1116/1.576908
In situ growth surface temperature measurement for molecular beam epitaxial growth of CdTe, ZnTe, and Cd1−xZnxTe alloys
J. Vac. Sci. Technol. A 8, 1002–1005 (1990)
https://doi.org/10.1116/1.576996
The growth of high quality CdTe on GaAs by molecular beam epitaxy
J. Vac. Sci. Technol. A 8, 1006–1012 (1990)
https://doi.org/10.1116/1.576997
Microstructural defect reduction in HgCdTe grown by photoassisted molecular‐beam epitaxy
J. Vac. Sci. Technol. A 8, 1013–1019 (1990)
https://doi.org/10.1116/1.576998
Growth of CdTe and Hg‐based alloys by chemical‐beam epitaxy
J. Vac. Sci. Technol. A 8, 1020–1024 (1990)
https://doi.org/10.1116/1.576999
p‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy
J. M. Arias; S. H. Shin; D. E. Cooper; M. Zandian; J. G. Pasko; E. R. Gertner; R. E. DeWames; J. Singh
J. Vac. Sci. Technol. A 8, 1025–1033 (1990)
https://doi.org/10.1116/1.577000
Chemical doping of HgCdTe by molecular‐beam epitaxy
J. Vac. Sci. Technol. A 8, 1034–1038 (1990)
https://doi.org/10.1116/1.577001
The influence of crystallographic orientation on gallium incorporation in HgCdTe grown by metalorganic chemical vapor deposition on GaAs
J. Vac. Sci. Technol. A 8, 1039–1044 (1990)
https://doi.org/10.1116/1.576958
Material characteristics of metalorganic chemical vapor deposition Hg1−xCdxTe/GaAs/Si
J. Vac. Sci. Technol. A 8, 1045–1048 (1990)
https://doi.org/10.1116/1.576959
A comparison of HgCdTe metalorganic chemical vapor deposition films on lattice matched CdZnTe and CdTeSe substrates
J. Vac. Sci. Technol. A 8, 1049–1053 (1990)
https://doi.org/10.1116/1.576960
The growth and characterization of HgTe and HgCdTe using methylalylltelluride
J. Vac. Sci. Technol. A 8, 1054–1058 (1990)
https://doi.org/10.1116/1.576961
Laser‐induced selected area epitaxy of CdTe and HgTe
J. Vac. Sci. Technol. A 8, 1059–1066 (1990)
https://doi.org/10.1116/1.576962
Large‐area HgTe–CdTe superlattices and Hg1−xCdxTe multilayers on GaAs and sapphire substrates grown by low‐temperature metalorganic chemical vapor deposition
G. N. Pain; N. Bharatula; T. J. Elms; P. Gwynn; M. Kibel; M. S. Kwietniak; P. Leech; N. Petkovic; C. Sandford; J. Thompson; T. Warminski; D. Gao; S. R. Glanvill; C. J. Rossouw; A. W. Stevenson; S. W. Wilkins; L. Wielunski
J. Vac. Sci. Technol. A 8, 1067–1077 (1990)
https://doi.org/10.1116/1.576963
The growth of CdHgTe on GaAs and fabrication of high‐quality photodiodes
L. M. Smith; C. F. Byrne; D. Patel; P. Knowles; J. Thompson; G. T. Jenkin; T. Nguyen Duy; A. Durand; M. Bourdillot
J. Vac. Sci. Technol. A 8, 1078–1085 (1990)
https://doi.org/10.1116/1.576964
Partial pressures of Hg and Te2 over (Hg1−xZnx)1−yTey solid solutions
J. Vac. Sci. Technol. A 8, 1086–1092 (1990)
https://doi.org/10.1116/1.576965
Growth, annealing, and characterization of HgZnTe liquid phase epitaxy layers
J. Vac. Sci. Technol. A 8, 1093–1097 (1990)
https://doi.org/10.1116/1.576966
Characterization of isothermal vapor phase epitaxial (Hg,Cd)Te
S. B. Lee; L. K. Magel; M. F. S. Tang; D. A. Stevenson; J. H. Tregilgas; M. W. Goodwin; R. L. Strong
J. Vac. Sci. Technol. A 8, 1098–1102 (1990)
https://doi.org/10.1116/1.576967
Defects in ZnTe, CdTe, and HgTe: Total energy calculations
J. Vac. Sci. Technol. A 8, 1103–1107 (1990)
https://doi.org/10.1116/1.576968
Low temperature interdiffusion in the HgCdTe/CdTe system, studied at near‐atomic resolution
J. Vac. Sci. Technol. A 8, 1116–1119 (1990)
https://doi.org/10.1116/1.576971
Diffusion and hardness studies in mercury zinc telluride
J. Vac. Sci. Technol. A 8, 1120–1126 (1990)
https://doi.org/10.1116/1.576972
Simple modeling techniques for analysis of laser beam induced current images
J. Vac. Sci. Technol. A 8, 1127–1132 (1990)
https://doi.org/10.1116/1.576973
Magneto‐optical investigation of impurity and defect levels in HgCdTe alloys
J. Vac. Sci. Technol. A 8, 1133–1138 (1990)
https://doi.org/10.1116/1.576974
Rapid contactless electrical characterization of process‐induced damage in HgCdTe
J. Vac. Sci. Technol. A 8, 1139–1142 (1990)
https://doi.org/10.1116/1.576975
Ion implantation into (Hg,Cd)Te through dielectric encapsulants
J. Vac. Sci. Technol. A 8, 1143–1146 (1990)
https://doi.org/10.1116/1.576976
Interfacial chemistry of metals on CdTe and ZnTe (110)
J. Vac. Sci. Technol. A 8, 1152–1158 (1990)
https://doi.org/10.1116/1.576978
Characterization of (Hg,Cd)Te by the photoconductive decay technique
J. Vac. Sci. Technol. A 8, 1167–1170 (1990)
https://doi.org/10.1116/1.576937
Metal contacts on Hg1−xCdxTe
J. Vac. Sci. Technol. A 8, 1174–1177 (1990)
https://doi.org/10.1116/1.576939
Surface passivation of HgCdTe photodiodes
J. Vac. Sci. Technol. A 8, 1182–1184 (1990)
https://doi.org/10.1116/1.576941
Passivation with II–VI compounds
J. Vac. Sci. Technol. A 8, 1185–1187 (1990)
https://doi.org/10.1116/1.576942
Room‐temperature magnetoabsorption in HgTe/Hg0.15Cd0.85Te superlattices
J. Vac. Sci. Technol. A 8, 1194–1199 (1990)
https://doi.org/10.1116/1.576944
Electron transport and cyclotron resonance in [211]‐oriented HgTe–CdTe superlattices
C. A. Hoffman; J. R. Meyer; R. J. Wagner; F. J. Bartoli; X. Chu; J. P. Faurie; L. R. Ram‐Mohan; H. Xie
J. Vac. Sci. Technol. A 8, 1200–1205 (1990)
https://doi.org/10.1116/1.576945
Stimulated emission at 2.8 μm from Hg‐based quantum well structures grown by photoassisted molecular beam epitaxy
J. Vac. Sci. Technol. A 8, 1206–1209 (1990)
https://doi.org/10.1116/1.576946
Stimulated emission from a Hg1−xCdxTe epilayer and CdTe/Hg1−xCdxTe heterostructures grown by molecular beam epitaxy
J. Vac. Sci. Technol. A 8, 1210–1214 (1990)
https://doi.org/10.1116/1.576947
Nonlinear optical coefficients of narrow‐gap semiconductors
E. R. Youngdale; C. A. Hoffman; J. R. Meyer; F. J. Bartoli; J. W. Han; J. W. Cook, Jr.; J. F. Schetzina; M. A. Engelhardt; E. W. Niles; H. Höchst
J. Vac. Sci. Technol. A 8, 1215–1220 (1990)
https://doi.org/10.1116/1.576948
Field‐effect transistors in Hg1−xCdxTe grown by photoassisted molecular beam epitaxy
J. Vac. Sci. Technol. A 8, 1221–1225 (1990)
https://doi.org/10.1116/1.576949
Metal–insulator semiconductor properties of molecular‐beam epitaxy grown HgCdTe heterostructures
J. Vac. Sci. Technol. A 8, 1226–1232 (1990)
https://doi.org/10.1116/1.576950
The spreading resistance technique applied to mercury cadmium telluride heterojunctions
J. Vac. Sci. Technol. A 8, 1233–1236 (1990)
https://doi.org/10.1116/1.576951
Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques
J. Vac. Sci. Technol. A 8, 1237–1244 (1990)
https://doi.org/10.1116/1.576952
Reverse breakdown in long wavelength lateral collection CdxHg1−xTe diodes
J. Vac. Sci. Technol. A 8, 1251–1253 (1990)
https://doi.org/10.1116/1.576954
Perspective on improving the quality of surface and material data analysis in the scientific literature with a focus on x-ray photoelectron spectroscopy (XPS)
George H. Major, Joshua W. Pinder, et al.
Low-resistivity molybdenum obtained by atomic layer deposition
Kees van der Zouw, Bernhard Y. van der Wel, et al.
Machine-learning-enabled on-the-fly analysis of RHEED patterns during thin film deposition by molecular beam epitaxy
Tiffany C. Kaspar, Sarah Akers, et al.