Skip Nav Destination
Issues
The influence of radio frequency sputter variables on the composition of YBa2Cu3O7 films
J. Vac. Sci. Technol. A 8, 1–6 (1990)
https://doi.org/10.1116/1.577065
Preparation of TbFe films by magnetron sputtering using multiphase target
J. Vac. Sci. Technol. A 8, 7–12 (1990)
https://doi.org/10.1116/1.576992
Influences of noble gases (Ne, Ar, and Kr) on magnetic properties of ion‐beam‐sputtered Fe/SiO2 multilayer films
J. Vac. Sci. Technol. A 8, 13–18 (1990)
https://doi.org/10.1116/1.577046
Diffusion welding of silver interlayers coated onto base metals by planar‐magnetron sputtering
J. Vac. Sci. Technol. A 8, 19–29 (1990)
https://doi.org/10.1116/1.577064
Model of energetic electron transport in magnetron discharges
J. Vac. Sci. Technol. A 8, 30–37 (1990)
https://doi.org/10.1116/1.577093
On the temperature dependence of the deposition rate of amorphous, hydrogenated carbon films
J. Vac. Sci. Technol. A 8, 38–42 (1990)
https://doi.org/10.1116/1.576403
The crystallographic and electroluminescent characteristics of ZnS:Mn thin films prepared by radio frequency ion‐plating technique
Shigeyuki Kiyota; Keiko Terai; Norifumi Kikuchi; Takuma Kojima; N. Shin‐ichi Takahashi; Shouichi Kurita
J. Vac. Sci. Technol. A 8, 43–48 (1990)
https://doi.org/10.1116/1.576416
Adsorption and thermal dissociation of disilane (Si2H6) on Si(100)2×1
J. Vac. Sci. Technol. A 8, 61–67 (1990)
https://doi.org/10.1116/1.576356
Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica
J. Vac. Sci. Technol. A 8, 68–72 (1990)
https://doi.org/10.1116/1.576983
Analysis and reduction of conductor stress in magnetic bubble memory devices
J. Vac. Sci. Technol. A 8, 73–78 (1990)
https://doi.org/10.1116/1.576990
Infrared‐laser interferometric thermometry: A nonintrusive technique for measuring semiconductor wafer temperatures
J. Vac. Sci. Technol. A 8, 84–92 (1990)
https://doi.org/10.1116/1.576993
Ion beam profiling and end‐point detection with microfocused secondary ion mass spectroscopy
J. Vac. Sci. Technol. A 8, 93–98 (1990)
https://doi.org/10.1116/1.576994
The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering
J. Vac. Sci. Technol. A 8, 99–105 (1990)
https://doi.org/10.1116/1.576995
Comparison of the attenuation lengths and the inelastic mean‐free path for photoelectrons in silver
J. Vac. Sci. Technol. A 8, 106–116 (1990)
https://doi.org/10.1116/1.577041
Distinguishing thin film and substrate contributions in microindentation hardness measurements
J. Vac. Sci. Technol. A 8, 117–122 (1990)
https://doi.org/10.1116/1.577042
Theoretical investigation of chemical bonding at aluminum/polyimide interface
J. Vac. Sci. Technol. A 8, 123–126 (1990)
https://doi.org/10.1116/1.577043
Modification to thermal emissions by clusters on their own metallic surface
J. Vac. Sci. Technol. A 8, 127–133 (1990)
https://doi.org/10.1116/1.577044
Room temperature reaction between polycrystalline Ni/Al bilayers deposited in ultrahigh vacuum
J. Vac. Sci. Technol. A 8, 134–140 (1990)
https://doi.org/10.1116/1.577045
The cryogenic diffusion pump and its implementation in a complete fusion reactor forevacuum system
J. Vac. Sci. Technol. A 8, 141–144 (1990)
https://doi.org/10.1116/1.577047
An ultrahigh vacuum compatible gimbled inspection mirror and ceramic scraper for the vacuum generators ESCALAB
J. Vac. Sci. Technol. A 8, 147–148 (1990)
https://doi.org/10.1116/1.577049
A warning concerning the use of glass capillary arrays in gas dosing: Potential chemical reactions
J. Vac. Sci. Technol. A 8, 148–149 (1990)
https://doi.org/10.1116/1.577050
Reusable quartz crystals for thickness monitoring in thin film deposition
J. Vac. Sci. Technol. A 8, 150–151 (1990)
https://doi.org/10.1116/1.577051
High‐resolution electron microscope observation of ‘‘atomic bridge’’ formation between two interacting gold particles
J. Vac. Sci. Technol. A 8, 153–154 (1990)
https://doi.org/10.1116/1.577053
First‐principles theory of the scanning tunneling microscopy simulation
J. Vac. Sci. Technol. A 8, 160–165 (1990)
https://doi.org/10.1116/1.577055
Simulation of scanning tunneling microscope image based on electronic states of surface/tip system
J. Vac. Sci. Technol. A 8, 170–173 (1990)
https://doi.org/10.1116/1.577057
Effect of the microscopic electronic states of the tip on the scanning tunneling microscopy image
J. Vac. Sci. Technol. A 8, 174–176 (1990)
https://doi.org/10.1116/1.577058
The Wentzel–Kramers–Brillouin method in multidimensional tunneling: Application to scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 177–181 (1990)
https://doi.org/10.1116/1.577059
Angle‐resolved tunneling between two atomic planes
J. Vac. Sci. Technol. A 8, 182–185 (1990)
https://doi.org/10.1116/1.577060
Epitaxial growth of silicon on Si(001) by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 195–200 (1990)
https://doi.org/10.1116/1.577063
Scanning tunneling microscopy study of diffusion, growth, and coarsening of Si on Si(001)
J. Vac. Sci. Technol. A 8, 201–206 (1990)
https://doi.org/10.1116/1.577066
Island and step structures on molecular beam epitaxy grown Si(001) surfaces
J. Vac. Sci. Technol. A 8, 207–209 (1990)
https://doi.org/10.1116/1.577067
Observations of strain effects on the Si(001) surface using scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 210–213 (1990)
https://doi.org/10.1116/1.577068
Surface diffractometry and lattice imaging of scanning tunneling microscopy images
J. Vac. Sci. Technol. A 8, 214–217 (1990)
https://doi.org/10.1116/1.577069
Scanning tunneling microscopy study of Si (001) and Si (110) surface structures resulting from different thermal cleaning treatments
J. Vac. Sci. Technol. A 8, 218–221 (1990)
https://doi.org/10.1116/1.577070
Corrugation of Si surfaces and profiles of tip apexes
J. Vac. Sci. Technol. A 8, 222–225 (1990)
https://doi.org/10.1116/1.577071
Determination of surface atomic positions by scanning tunneling microscope observations
J. Vac. Sci. Technol. A 8, 226–232 (1990)
https://doi.org/10.1116/1.577072
Field ion‐scanning tunneling microscopy of alkali metal adsorption on the Si(100) surface
T. Hashizume; Y. Hasegawa; I. Kamiya; T. Ide; I. Sumita; S. Hyodo; T. Sakurai; H. Tochihara; M. Kubota; Y. Murata
J. Vac. Sci. Technol. A 8, 233–237 (1990)
https://doi.org/10.1116/1.577073
Cluster formation of Li on the Si(111)7×7 surface
J. Vac. Sci. Technol. A 8, 238–240 (1990)
https://doi.org/10.1116/1.577074
Initial stage deposition of Ag on the Si(100)2×1 surface studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 249–250 (1990)
https://doi.org/10.1116/1.577077
The growth of Ag films on Si(100)
J. Vac. Sci. Technol. A 8, 251–254 (1990)
https://doi.org/10.1116/1.577078
Real‐time observation of oxygen and hydrogen adsorption on silicon surfaces by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 255–258 (1990)
https://doi.org/10.1116/1.577079
Atomic hydrogen chemisorption on the Si(111) 7×7 surface
J. Vac. Sci. Technol. A 8, 259–261 (1990)
https://doi.org/10.1116/1.577080
Scanning tunneling microscopy of silicon surfaces in air: Observation of atomic images
J. Vac. Sci. Technol. A 8, 262–265 (1990)
https://doi.org/10.1116/1.577081
Hydrogen terminated Si(100) surfaces studied by scanning tunneling microscopy, x‐ray photon spectroscopy, and Auger electron spectroscopy
J. Vac. Sci. Technol. A 8, 266–269 (1990)
https://doi.org/10.1116/1.577082
Tunneling barrier height imaging and polycrystalline Si surface observations
J. Vac. Sci. Technol. A 8, 270–274 (1990)
https://doi.org/10.1116/1.577083
Scanning tunneling microscopy/spectroscopy of a‐Si:H/SiNx interface of thin film transistors
J. Vac. Sci. Technol. A 8, 275–279 (1990)
https://doi.org/10.1116/1.577084
GaAs epitaxy and heteroepitaxy: A scanning tunneling microscopy study
J. Vac. Sci. Technol. A 8, 280–283 (1990)
https://doi.org/10.1116/1.577085
Dispersion of evanescent band gap states in Fe clusters on GaAs(110)
J. Vac. Sci. Technol. A 8, 284–288 (1990)
https://doi.org/10.1116/1.577086
Thermal roughening studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 293–296 (1990)
https://doi.org/10.1116/1.577088
Scanning tunneling microscopy study of the structure of sulfur [2(3)1/2×2(3)1/2] R 30° overlayer on rhenium (0001)
J. Vac. Sci. Technol. A 8, 297–301 (1990)
https://doi.org/10.1116/1.577089
Superstructures of sulfur on stepped copper surfaces observed by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 302–304 (1990)
https://doi.org/10.1116/1.577090
Scanning tunneling microscopy and transmission electron microscopy studies of Au and Pd clusters grown on a clean graphite surface
J. Vac. Sci. Technol. A 8, 311–313 (1990)
https://doi.org/10.1116/1.577094
Real‐space images of noble metal (Cu, Ag, Au) thin films by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 314–316 (1990)
https://doi.org/10.1116/1.577095
Microfabrication of integrated scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 317–318 (1990)
https://doi.org/10.1116/1.577096
New versatile room‐temperature field ion scanning tunneling microscopy
Toshi Sakurai; T. Hashizume; Y. Hasegawa; I. Kamiya; N. Sano; K. Yokoyama; H. Tanaka; I. Sumita; S. Hyodo
J. Vac. Sci. Technol. A 8, 324–326 (1990)
https://doi.org/10.1116/1.577098
A versatile low‐temperature scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 330–332 (1990)
https://doi.org/10.1116/1.577100
An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism
J. Vac. Sci. Technol. A 8, 333–335 (1990)
https://doi.org/10.1116/1.577101
Differential conductance imaging under alternate current tunneling bias
J. Vac. Sci. Technol. A 8, 336–338 (1990)
https://doi.org/10.1116/1.577102
An ultrahigh vacuum scanning tunneling microscope for the investigation of clean surfaces
J. Vac. Sci. Technol. A 8, 339–344 (1990)
https://doi.org/10.1116/1.577103
A scanning tunneling microscope for ultrahigh vacuum atom–surface interaction studies
J. Vac. Sci. Technol. A 8, 345–349 (1990)
https://doi.org/10.1116/1.577104
Scanning tunneling microscope combined with optical microscope for large sample measurement
J. Vac. Sci. Technol. A 8, 350–353 (1990)
https://doi.org/10.1116/1.577105
A compact scanning tunneling microscopy control and data acquisition system based on a Macintosh II workstation
J. Vac. Sci. Technol. A 8, 357–362 (1990)
https://doi.org/10.1116/1.576396
From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope
S. A. C. Gould; B. Drake; C. B. Prater; A. L. Weisenhorn; S. Manne; H. G. Hansma; P. K. Hansma; J. Massie; M. Longmire; V. Elings; B. Dixon Northern; B. Mukergee; C. M. Peterson; W. Stoeckenius; T. R. Albrecht; C. F. Quate
J. Vac. Sci. Technol. A 8, 369–373 (1990)
https://doi.org/10.1116/1.576398
Localized charge force microscopy
J. Vac. Sci. Technol. A 8, 374–377 (1990)
https://doi.org/10.1116/1.576399
Performance of a scanning force microscope using a laser diode
J. Vac. Sci. Technol. A 8, 378–382 (1990)
https://doi.org/10.1116/1.576400
Force microscope with capacitive displacement detection
J. Vac. Sci. Technol. A 8, 383–387 (1990)
https://doi.org/10.1116/1.576401
Atomic force sensors constructed from carbon and quartz fibers
J. Vac. Sci. Technol. A 8, 388–390 (1990)
https://doi.org/10.1116/1.576402
Surface imaging in air with a force microscope
J. Vac. Sci. Technol. A 8, 391–393 (1990)
https://doi.org/10.1116/1.576404
Potentiometry for thin‐film structures using atomic force microscopy
J. Vac. Sci. Technol. A 8, 394–399 (1990)
https://doi.org/10.1116/1.576405
Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy
J. Vac. Sci. Technol. A 8, 403–405 (1990)
https://doi.org/10.1116/1.576407
High resolution magnetic force microscopy
J. Vac. Sci. Technol. A 8, 406–410 (1990)
https://doi.org/10.1116/1.576408
Theory of magnetic force microscopy
J. Vac. Sci. Technol. A 8, 411–415 (1990)
https://doi.org/10.1116/1.576409
Analysis of magnetic bit pattern by magnetic force microscopy
J. Vac. Sci. Technol. A 8, 416–420 (1990)
https://doi.org/10.1116/1.576410
Correlation between scanning tunneling microscopy/spectroscopy images and apex profiles of scanning tips
J. Vac. Sci. Technol. A 8, 421–424 (1990)
https://doi.org/10.1116/1.576411
Elaboration and evaluation of tip manipulation of scanning tunneling microscopy
Masahiko Tomitori; Nobuo Hirano; Fumikazu Iwawaki; Yuichi Watanabe; Tetsuya Takayanagi; Osamu Nishikawa
J. Vac. Sci. Technol. A 8, 425–428 (1990)
https://doi.org/10.1116/1.576412
New scanning tunneling microscopy tip for measuring surface topography
J. Vac. Sci. Technol. A 8, 429–433 (1990)
https://doi.org/10.1116/1.576413
Oxygen‐induced sharpening process of W(111) tips for scanning tunneling microscope use
J. Vac. Sci. Technol. A 8, 438–440 (1990)
https://doi.org/10.1116/1.576415
Transmission electron microscopy of scanning tunneling tips
J. Vac. Sci. Technol. A 8, 441–444 (1990)
https://doi.org/10.1116/1.576417
High Φ values in scanning tunneling microscopy: Field emission and tunnel regimes
J. Vac. Sci. Technol. A 8, 445–449 (1990)
https://doi.org/10.1116/1.577015
Spectroscopic and spatial characterization of superconducting vortex core states with a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 450–454 (1990)
https://doi.org/10.1116/1.577016
Tunneling spectroscopy of conductive ceramics
Takanori Oshio; Junzo Tanaka; Akira Ono; Toshihiko Nagamura; Yasuhiko Kamizono; Yoshiyuki Sakai; Shaw Ehara
J. Vac. Sci. Technol. A 8, 455–458 (1990)
https://doi.org/10.1116/1.577017
Scanning tunneling potentiometry studies of Y1Ba2Cu3O7−x and gold thin films
J. Vac. Sci. Technol. A 8, 459–463 (1990)
https://doi.org/10.1116/1.577018
Low temperature scanning tunneling topography of YBa2Cu3Ox superconducting films
J. Vac. Sci. Technol. A 8, 464–467 (1990)
https://doi.org/10.1116/1.577019
Characteristics of newly developed scanning tunneling microscopy/spectroscopy at low temperatures
J. Vac. Sci. Technol. A 8, 468–471 (1990)
https://doi.org/10.1116/1.577020
Scanning tunneling microscopy of chemical vapor deposition grown BiSrCaCuO films
J. Vac. Sci. Technol. A 8, 472–474 (1990)
https://doi.org/10.1116/1.577021
Tunneling spectroscopy on an organic superconductor (BEDT‐TTF)2Cu(NCS)2
J. Vac. Sci. Technol. A 8, 479–483 (1990)
https://doi.org/10.1116/1.577023
Scanning tunneling microscopy of silver containing salt of bis(ethylenedithio)tetrathiafulvalene
J. Vac. Sci. Technol. A 8, 484–487 (1990)
https://doi.org/10.1116/1.577024
Observation of an organic superconductor [bis(ethylenedithio)tetrathiafulvalene]2[Cu(NCS)2] by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 488–489 (1990)
https://doi.org/10.1116/1.577025
Scanning tunneling microscopy of the linear chain compounds NbSe3, TaS3, and TaSe3
J. Vac. Sci. Technol. A 8, 490–494 (1990)
https://doi.org/10.1116/1.577026
Different response of atomic force microscopy and scanning tunneling microscopy to charge density waves
J. Vac. Sci. Technol. A 8, 495–499 (1990)
https://doi.org/10.1116/1.576372
Scanning tunneling microscopy observation of MoS2 surface and gold clusters deposited on MoS2 surface
J. Vac. Sci. Technol. A 8, 500–503 (1990)
https://doi.org/10.1116/1.576374
Scanning tunneling microscopy observation of sliding charge‐density wave in blue bronze
J. Vac. Sci. Technol. A 8, 504–507 (1990)
https://doi.org/10.1116/1.576375
Observing the varying scanning tunneling microscopy image of graphite
J. Vac. Sci. Technol. A 8, 508–510 (1990)
https://doi.org/10.1116/1.576376
Real‐time in situ studies of metal electrodeposition with scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 511–514 (1990)
https://doi.org/10.1116/1.576377
In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps
J. Vac. Sci. Technol. A 8, 515–519 (1990)
https://doi.org/10.1116/1.576378
In situ, real‐time monitoring of electrode surfaces by scanning tunneling microscopy. III. Surface structure of Pt and Pd electrodes
J. Vac. Sci. Technol. A 8, 520–524 (1990)
https://doi.org/10.1116/1.576379
Chloride ion‐induced large scale reconstruction on an electrochemically roughened Ag electrode
J. Vac. Sci. Technol. A 8, 530–533 (1990)
https://doi.org/10.1116/1.576381
Surface electronic structure of semiconductor ( p‐ and n‐Si) electrodes in electrolyte solution
J. Vac. Sci. Technol. A 8, 534–538 (1990)
https://doi.org/10.1116/1.576382
Scanning tunneling microscopy studies of semiconductor electrochemistry
J. Vac. Sci. Technol. A 8, 539–543 (1990)
https://doi.org/10.1116/1.576383
A scanning tunneling microscopy study of the surface microstructure of alpha‐ and beta‐lead dioxide
J. Vac. Sci. Technol. A 8, 544–548 (1990)
https://doi.org/10.1116/1.576384
Scanning tunneling spectroscopy on cleaved silicon pn junctions
J. Vac. Sci. Technol. A 8, 549–552 (1990)
https://doi.org/10.1116/1.576385
Power spectra of surface roughness of light emitting tunnel junctions measured by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 557–560 (1990)
https://doi.org/10.1116/1.576387
Scanning tip microscope for study of electrical inhomogeneity on submicron scale
J. Vac. Sci. Technol. A 8, 561–566 (1990)
https://doi.org/10.1116/1.576388
Observation of multiquantum well structure in air using a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 567–570 (1990)
https://doi.org/10.1116/1.576389
Nanometer scale structuring of silicon by direct indentation
J. Vac. Sci. Technol. A 8, 574–576 (1990)
https://doi.org/10.1116/1.576391
Fabrication of nucleation sites for nanometer size selective deposition by scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 581–584 (1990)
https://doi.org/10.1116/1.576393
Nanometer‐scale roughness study and indentation test with a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 585–589 (1990)
https://doi.org/10.1116/1.576394
Thermal noise in vacuum scanning tunneling microscopy at zero bias voltage
J. Vac. Sci. Technol. A 8, 590–593 (1990)
https://doi.org/10.1116/1.576348
Study of field‐emitting microstructures using a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 594–597 (1990)
https://doi.org/10.1116/1.576349
Possible evidence of single electron tunneling with the scanning tunneling microscope at room temperature
J. Vac. Sci. Technol. A 8, 598–602 (1990)
https://doi.org/10.1116/1.576350
Structure of platinum ultrafine particles in Pt/C catalyst observed by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 608–609 (1990)
https://doi.org/10.1116/1.576352
Material contrast using the scanning tunneling microscope in ambient conditions
J. Vac. Sci. Technol. A 8, 618–620 (1990)
https://doi.org/10.1116/1.576355
Evaluation of elastic emission machined surfaces by scanning tunneling microscopy
Yuzo Mori; Kazuto Yamauchi; Katsuyoshi Endo; Takashi Ide; Hiromichi Toyota; Keitaro Nishizawa; Minoru Hasegawa
J. Vac. Sci. Technol. A 8, 621–624 (1990)
https://doi.org/10.1116/1.576357
A scanning tunneling microscopy/current imaging tunneling spectroscopy investigation of an organic molecule: 4‐cyano‐4′‐n‐heptylbiphenyl
J. Vac. Sci. Technol. A 8, 625–627 (1990)
https://doi.org/10.1116/1.576358
Observation of Vickers imprints by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 628–630 (1990)
https://doi.org/10.1116/1.576359
Surface roughness of rubbed polyimide film for liquid crystals by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 631–634 (1990)
https://doi.org/10.1116/1.576360
Imaging of biomolecules with the scanning tunneling microscope: Problems and prospects
J. Vac. Sci. Technol. A 8, 635–641 (1990)
https://doi.org/10.1116/1.576361
Molecular structure of organic compounds observed by high resolution scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 642–644 (1990)
https://doi.org/10.1116/1.576362
Direct observation of bioelectrochemical processes by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 645–647 (1990)
https://doi.org/10.1116/1.576363
Polypeptide structures imaged by the scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 648–651 (1990)
https://doi.org/10.1116/1.576364
Direct observations of enzymes and their complexes by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 652–654 (1990)
https://doi.org/10.1116/1.576365
Scanning tunneling microscopy for studying the biomaterial–biological tissue interface
J. Vac. Sci. Technol. A 8, 655–658 (1990)
https://doi.org/10.1116/1.576366
The topography of isolated molecules of copper–phthalocyanine adsorbed on GaAs(110)
J. Vac. Sci. Technol. A 8, 659–660 (1990)
https://doi.org/10.1116/1.576367
Scanning tunneling microscopy imaging of uncoated biological material
J. Vac. Sci. Technol. A 8, 661–666 (1990)
https://doi.org/10.1116/1.576368
Mechanisms for the deposition of nanometer‐sized structures from organic fluids using the scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 667–671 (1990)
https://doi.org/10.1116/1.576369
Adsorption of liquid crystals imaged using scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 672–674 (1990)
https://doi.org/10.1116/1.576370
Scanning tunneling spectroscopy study of adsorbed molecules
J. Vac. Sci. Technol. A 8, 675–678 (1990)
https://doi.org/10.1116/1.576371
Reactive graphite etch and the structure of an adsorbed organic monolayer—a scanning tunneling microscopy study
J. Vac. Sci. Technol. A 8, 679–683 (1990)
https://doi.org/10.1116/1.576980
Scanning tunneling microscopy of the phosphatidylcholine bilayers
Changhong Luo; Chuanfeng Zhu; Like Ruan; Guizhen Huang; Changchun Dai; Zhengbo Cheng; Chunli Bai; Yaxian Su; Sanduo Xu; Kechun Lin; John D. Baldeschwieler
J. Vac. Sci. Technol. A 8, 684–686 (1990)
https://doi.org/10.1116/1.576981
Scanning tunneling microscopy of cytoskeletal proteins: Microtubules and intermediate filaments
Stuart Hameroff; Yovana Simic‐Krstic; Lawrence Vernetti; Y. C. Lee; Dror Sarid; Jerome Wiedmann; Virgil Elings; Kevin Kjoller; Robert McCuskey
J. Vac. Sci. Technol. A 8, 687–691 (1990)
https://doi.org/10.1116/1.576982
Application of scanning tunneling microscopy for imaging of CNBr‐peptides of type I collagen
J. Vac. Sci. Technol. A 8, 692–694 (1990)
https://doi.org/10.1116/1.576984
The surface structure of artificial and natural membranes as studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 695–697 (1990)
https://doi.org/10.1116/1.576985
Scanning tunneling microscopy of biomolecules
M. J. Miles; T. McMaster; H. J. Carr; A. S. Tatham; P. R. Shewry; J. M. Field; P. S. Belton; D. Jeenes; B. Hanley; M. Whittam; P. Cairns; V. J. Morris; N. Lambert
J. Vac. Sci. Technol. A 8, 698–702 (1990)
https://doi.org/10.1116/1.576986
Deoxyribonucleic acid structures visualized by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 703–705 (1990)
https://doi.org/10.1116/1.576987
Scanning tunneling microscopic immunoassay: A preliminary experiment
J. Vac. Sci. Technol. A 8, 713–717 (1990)
https://doi.org/10.1116/1.576989