Skip Nav Destination
Issues
The influence of radio frequency sputter variables on the composition of YBa2Cu3O7 films
J. Vac. Sci. Technol. A 8, 1–6 (1990)
https://doi.org/10.1116/1.577065
Preparation of TbFe films by magnetron sputtering using multiphase target
J. Vac. Sci. Technol. A 8, 7–12 (1990)
https://doi.org/10.1116/1.576992
Influences of noble gases (Ne, Ar, and Kr) on magnetic properties of ion‐beam‐sputtered Fe/SiO2 multilayer films
J. Vac. Sci. Technol. A 8, 13–18 (1990)
https://doi.org/10.1116/1.577046
Diffusion welding of silver interlayers coated onto base metals by planar‐magnetron sputtering
J. Vac. Sci. Technol. A 8, 19–29 (1990)
https://doi.org/10.1116/1.577064
Model of energetic electron transport in magnetron discharges
J. Vac. Sci. Technol. A 8, 30–37 (1990)
https://doi.org/10.1116/1.577093
On the temperature dependence of the deposition rate of amorphous, hydrogenated carbon films
J. Vac. Sci. Technol. A 8, 38–42 (1990)
https://doi.org/10.1116/1.576403
The crystallographic and electroluminescent characteristics of ZnS:Mn thin films prepared by radio frequency ion‐plating technique
Shigeyuki Kiyota; Keiko Terai; Norifumi Kikuchi; Takuma Kojima; N. Shin‐ichi Takahashi; Shouichi Kurita
J. Vac. Sci. Technol. A 8, 43–48 (1990)
https://doi.org/10.1116/1.576416
Adsorption and thermal dissociation of disilane (Si2H6) on Si(100)2×1
J. Vac. Sci. Technol. A 8, 61–67 (1990)
https://doi.org/10.1116/1.576356
Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica
J. Vac. Sci. Technol. A 8, 68–72 (1990)
https://doi.org/10.1116/1.576983
Analysis and reduction of conductor stress in magnetic bubble memory devices
J. Vac. Sci. Technol. A 8, 73–78 (1990)
https://doi.org/10.1116/1.576990
Infrared‐laser interferometric thermometry: A nonintrusive technique for measuring semiconductor wafer temperatures
J. Vac. Sci. Technol. A 8, 84–92 (1990)
https://doi.org/10.1116/1.576993
Ion beam profiling and end‐point detection with microfocused secondary ion mass spectroscopy
J. Vac. Sci. Technol. A 8, 93–98 (1990)
https://doi.org/10.1116/1.576994
The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering
J. Vac. Sci. Technol. A 8, 99–105 (1990)
https://doi.org/10.1116/1.576995
Comparison of the attenuation lengths and the inelastic mean‐free path for photoelectrons in silver
J. Vac. Sci. Technol. A 8, 106–116 (1990)
https://doi.org/10.1116/1.577041
Distinguishing thin film and substrate contributions in microindentation hardness measurements
J. Vac. Sci. Technol. A 8, 117–122 (1990)
https://doi.org/10.1116/1.577042
Theoretical investigation of chemical bonding at aluminum/polyimide interface
J. Vac. Sci. Technol. A 8, 123–126 (1990)
https://doi.org/10.1116/1.577043
Modification to thermal emissions by clusters on their own metallic surface
J. Vac. Sci. Technol. A 8, 127–133 (1990)
https://doi.org/10.1116/1.577044
Room temperature reaction between polycrystalline Ni/Al bilayers deposited in ultrahigh vacuum
J. Vac. Sci. Technol. A 8, 134–140 (1990)
https://doi.org/10.1116/1.577045
The cryogenic diffusion pump and its implementation in a complete fusion reactor forevacuum system
J. Vac. Sci. Technol. A 8, 141–144 (1990)
https://doi.org/10.1116/1.577047
An ultrahigh vacuum compatible gimbled inspection mirror and ceramic scraper for the vacuum generators ESCALAB
J. Vac. Sci. Technol. A 8, 147–148 (1990)
https://doi.org/10.1116/1.577049
A warning concerning the use of glass capillary arrays in gas dosing: Potential chemical reactions
J. Vac. Sci. Technol. A 8, 148–149 (1990)
https://doi.org/10.1116/1.577050
Reusable quartz crystals for thickness monitoring in thin film deposition
J. Vac. Sci. Technol. A 8, 150–151 (1990)
https://doi.org/10.1116/1.577051
High‐resolution electron microscope observation of ‘‘atomic bridge’’ formation between two interacting gold particles
J. Vac. Sci. Technol. A 8, 153–154 (1990)
https://doi.org/10.1116/1.577053
First‐principles theory of the scanning tunneling microscopy simulation
J. Vac. Sci. Technol. A 8, 160–165 (1990)
https://doi.org/10.1116/1.577055
Simulation of scanning tunneling microscope image based on electronic states of surface/tip system
J. Vac. Sci. Technol. A 8, 170–173 (1990)
https://doi.org/10.1116/1.577057
Effect of the microscopic electronic states of the tip on the scanning tunneling microscopy image
J. Vac. Sci. Technol. A 8, 174–176 (1990)
https://doi.org/10.1116/1.577058
The Wentzel–Kramers–Brillouin method in multidimensional tunneling: Application to scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 177–181 (1990)
https://doi.org/10.1116/1.577059
Angle‐resolved tunneling between two atomic planes
J. Vac. Sci. Technol. A 8, 182–185 (1990)
https://doi.org/10.1116/1.577060
Epitaxial growth of silicon on Si(001) by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 195–200 (1990)
https://doi.org/10.1116/1.577063
Scanning tunneling microscopy study of diffusion, growth, and coarsening of Si on Si(001)
J. Vac. Sci. Technol. A 8, 201–206 (1990)
https://doi.org/10.1116/1.577066
Island and step structures on molecular beam epitaxy grown Si(001) surfaces
J. Vac. Sci. Technol. A 8, 207–209 (1990)
https://doi.org/10.1116/1.577067
Observations of strain effects on the Si(001) surface using scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 210–213 (1990)
https://doi.org/10.1116/1.577068
Surface diffractometry and lattice imaging of scanning tunneling microscopy images
J. Vac. Sci. Technol. A 8, 214–217 (1990)
https://doi.org/10.1116/1.577069
Scanning tunneling microscopy study of Si (001) and Si (110) surface structures resulting from different thermal cleaning treatments
J. Vac. Sci. Technol. A 8, 218–221 (1990)
https://doi.org/10.1116/1.577070
Corrugation of Si surfaces and profiles of tip apexes
J. Vac. Sci. Technol. A 8, 222–225 (1990)
https://doi.org/10.1116/1.577071
Determination of surface atomic positions by scanning tunneling microscope observations
J. Vac. Sci. Technol. A 8, 226–232 (1990)
https://doi.org/10.1116/1.577072
Field ion‐scanning tunneling microscopy of alkali metal adsorption on the Si(100) surface
T. Hashizume; Y. Hasegawa; I. Kamiya; T. Ide; I. Sumita; S. Hyodo; T. Sakurai; H. Tochihara; M. Kubota; Y. Murata
J. Vac. Sci. Technol. A 8, 233–237 (1990)
https://doi.org/10.1116/1.577073
Cluster formation of Li on the Si(111)7×7 surface
J. Vac. Sci. Technol. A 8, 238–240 (1990)
https://doi.org/10.1116/1.577074
Initial stage deposition of Ag on the Si(100)2×1 surface studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 249–250 (1990)
https://doi.org/10.1116/1.577077
The growth of Ag films on Si(100)
J. Vac. Sci. Technol. A 8, 251–254 (1990)
https://doi.org/10.1116/1.577078
Real‐time observation of oxygen and hydrogen adsorption on silicon surfaces by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 255–258 (1990)
https://doi.org/10.1116/1.577079
Atomic hydrogen chemisorption on the Si(111) 7×7 surface
J. Vac. Sci. Technol. A 8, 259–261 (1990)
https://doi.org/10.1116/1.577080
Scanning tunneling microscopy of silicon surfaces in air: Observation of atomic images
J. Vac. Sci. Technol. A 8, 262–265 (1990)
https://doi.org/10.1116/1.577081
Hydrogen terminated Si(100) surfaces studied by scanning tunneling microscopy, x‐ray photon spectroscopy, and Auger electron spectroscopy
J. Vac. Sci. Technol. A 8, 266–269 (1990)
https://doi.org/10.1116/1.577082
Tunneling barrier height imaging and polycrystalline Si surface observations
J. Vac. Sci. Technol. A 8, 270–274 (1990)
https://doi.org/10.1116/1.577083
Scanning tunneling microscopy/spectroscopy of a‐Si:H/SiNx interface of thin film transistors
J. Vac. Sci. Technol. A 8, 275–279 (1990)
https://doi.org/10.1116/1.577084
GaAs epitaxy and heteroepitaxy: A scanning tunneling microscopy study
J. Vac. Sci. Technol. A 8, 280–283 (1990)
https://doi.org/10.1116/1.577085
Dispersion of evanescent band gap states in Fe clusters on GaAs(110)
J. Vac. Sci. Technol. A 8, 284–288 (1990)
https://doi.org/10.1116/1.577086
Thermal roughening studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 293–296 (1990)
https://doi.org/10.1116/1.577088
Scanning tunneling microscopy study of the structure of sulfur [2(3)1/2×2(3)1/2] R 30° overlayer on rhenium (0001)
J. Vac. Sci. Technol. A 8, 297–301 (1990)
https://doi.org/10.1116/1.577089
Superstructures of sulfur on stepped copper surfaces observed by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 302–304 (1990)
https://doi.org/10.1116/1.577090
Scanning tunneling microscopy and transmission electron microscopy studies of Au and Pd clusters grown on a clean graphite surface
J. Vac. Sci. Technol. A 8, 311–313 (1990)
https://doi.org/10.1116/1.577094
Real‐space images of noble metal (Cu, Ag, Au) thin films by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 314–316 (1990)
https://doi.org/10.1116/1.577095
Microfabrication of integrated scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 317–318 (1990)
https://doi.org/10.1116/1.577096
New versatile room‐temperature field ion scanning tunneling microscopy
Toshi Sakurai; T. Hashizume; Y. Hasegawa; I. Kamiya; N. Sano; K. Yokoyama; H. Tanaka; I. Sumita; S. Hyodo
J. Vac. Sci. Technol. A 8, 324–326 (1990)
https://doi.org/10.1116/1.577098
A versatile low‐temperature scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 330–332 (1990)
https://doi.org/10.1116/1.577100
An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism
J. Vac. Sci. Technol. A 8, 333–335 (1990)
https://doi.org/10.1116/1.577101
Differential conductance imaging under alternate current tunneling bias
J. Vac. Sci. Technol. A 8, 336–338 (1990)
https://doi.org/10.1116/1.577102
An ultrahigh vacuum scanning tunneling microscope for the investigation of clean surfaces
J. Vac. Sci. Technol. A 8, 339–344 (1990)
https://doi.org/10.1116/1.577103
A scanning tunneling microscope for ultrahigh vacuum atom–surface interaction studies
J. Vac. Sci. Technol. A 8, 345–349 (1990)
https://doi.org/10.1116/1.577104
Scanning tunneling microscope combined with optical microscope for large sample measurement
J. Vac. Sci. Technol. A 8, 350–353 (1990)
https://doi.org/10.1116/1.577105
A compact scanning tunneling microscopy control and data acquisition system based on a Macintosh II workstation
J. Vac. Sci. Technol. A 8, 357–362 (1990)
https://doi.org/10.1116/1.576396
From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope
S. A. C. Gould; B. Drake; C. B. Prater; A. L. Weisenhorn; S. Manne; H. G. Hansma; P. K. Hansma; J. Massie; M. Longmire; V. Elings; B. Dixon Northern; B. Mukergee; C. M. Peterson; W. Stoeckenius; T. R. Albrecht; C. F. Quate
J. Vac. Sci. Technol. A 8, 369–373 (1990)
https://doi.org/10.1116/1.576398
Localized charge force microscopy
J. Vac. Sci. Technol. A 8, 374–377 (1990)
https://doi.org/10.1116/1.576399
Performance of a scanning force microscope using a laser diode
J. Vac. Sci. Technol. A 8, 378–382 (1990)
https://doi.org/10.1116/1.576400
Force microscope with capacitive displacement detection
J. Vac. Sci. Technol. A 8, 383–387 (1990)
https://doi.org/10.1116/1.576401
Atomic force sensors constructed from carbon and quartz fibers
J. Vac. Sci. Technol. A 8, 388–390 (1990)
https://doi.org/10.1116/1.576402
Surface imaging in air with a force microscope
J. Vac. Sci. Technol. A 8, 391–393 (1990)
https://doi.org/10.1116/1.576404
Potentiometry for thin‐film structures using atomic force microscopy
J. Vac. Sci. Technol. A 8, 394–399 (1990)
https://doi.org/10.1116/1.576405
Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy
J. Vac. Sci. Technol. A 8, 403–405 (1990)
https://doi.org/10.1116/1.576407
High resolution magnetic force microscopy
J. Vac. Sci. Technol. A 8, 406–410 (1990)
https://doi.org/10.1116/1.576408
Theory of magnetic force microscopy
J. Vac. Sci. Technol. A 8, 411–415 (1990)
https://doi.org/10.1116/1.576409
Analysis of magnetic bit pattern by magnetic force microscopy
J. Vac. Sci. Technol. A 8, 416–420 (1990)
https://doi.org/10.1116/1.576410
Correlation between scanning tunneling microscopy/spectroscopy images and apex profiles of scanning tips
J. Vac. Sci. Technol. A 8, 421–424 (1990)
https://doi.org/10.1116/1.576411
Elaboration and evaluation of tip manipulation of scanning tunneling microscopy
Masahiko Tomitori; Nobuo Hirano; Fumikazu Iwawaki; Yuichi Watanabe; Tetsuya Takayanagi; Osamu Nishikawa
J. Vac. Sci. Technol. A 8, 425–428 (1990)
https://doi.org/10.1116/1.576412
New scanning tunneling microscopy tip for measuring surface topography
J. Vac. Sci. Technol. A 8, 429–433 (1990)
https://doi.org/10.1116/1.576413
Oxygen‐induced sharpening process of W(111) tips for scanning tunneling microscope use
J. Vac. Sci. Technol. A 8, 438–440 (1990)
https://doi.org/10.1116/1.576415
Transmission electron microscopy of scanning tunneling tips
J. Vac. Sci. Technol. A 8, 441–444 (1990)
https://doi.org/10.1116/1.576417
High Φ values in scanning tunneling microscopy: Field emission and tunnel regimes
J. Vac. Sci. Technol. A 8, 445–449 (1990)
https://doi.org/10.1116/1.577015
Spectroscopic and spatial characterization of superconducting vortex core states with a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 450–454 (1990)
https://doi.org/10.1116/1.577016
Tunneling spectroscopy of conductive ceramics
Takanori Oshio; Junzo Tanaka; Akira Ono; Toshihiko Nagamura; Yasuhiko Kamizono; Yoshiyuki Sakai; Shaw Ehara
J. Vac. Sci. Technol. A 8, 455–458 (1990)
https://doi.org/10.1116/1.577017
Scanning tunneling potentiometry studies of Y1Ba2Cu3O7−x and gold thin films
J. Vac. Sci. Technol. A 8, 459–463 (1990)
https://doi.org/10.1116/1.577018
Low temperature scanning tunneling topography of YBa2Cu3Ox superconducting films
J. Vac. Sci. Technol. A 8, 464–467 (1990)
https://doi.org/10.1116/1.577019
Characteristics of newly developed scanning tunneling microscopy/spectroscopy at low temperatures
J. Vac. Sci. Technol. A 8, 468–471 (1990)
https://doi.org/10.1116/1.577020
Scanning tunneling microscopy of chemical vapor deposition grown BiSrCaCuO films
J. Vac. Sci. Technol. A 8, 472–474 (1990)
https://doi.org/10.1116/1.577021
Tunneling spectroscopy on an organic superconductor (BEDT‐TTF)2Cu(NCS)2
J. Vac. Sci. Technol. A 8, 479–483 (1990)
https://doi.org/10.1116/1.577023
Scanning tunneling microscopy of silver containing salt of bis(ethylenedithio)tetrathiafulvalene
J. Vac. Sci. Technol. A 8, 484–487 (1990)
https://doi.org/10.1116/1.577024
Observation of an organic superconductor [bis(ethylenedithio)tetrathiafulvalene]2[Cu(NCS)2] by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 488–489 (1990)
https://doi.org/10.1116/1.577025
Scanning tunneling microscopy of the linear chain compounds NbSe3, TaS3, and TaSe3
J. Vac. Sci. Technol. A 8, 490–494 (1990)
https://doi.org/10.1116/1.577026
Different response of atomic force microscopy and scanning tunneling microscopy to charge density waves
J. Vac. Sci. Technol. A 8, 495–499 (1990)
https://doi.org/10.1116/1.576372
Scanning tunneling microscopy observation of MoS2 surface and gold clusters deposited on MoS2 surface
J. Vac. Sci. Technol. A 8, 500–503 (1990)
https://doi.org/10.1116/1.576374
Scanning tunneling microscopy observation of sliding charge‐density wave in blue bronze
J. Vac. Sci. Technol. A 8, 504–507 (1990)
https://doi.org/10.1116/1.576375
Observing the varying scanning tunneling microscopy image of graphite
J. Vac. Sci. Technol. A 8, 508–510 (1990)
https://doi.org/10.1116/1.576376
Real‐time in situ studies of metal electrodeposition with scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 511–514 (1990)
https://doi.org/10.1116/1.576377
In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps
J. Vac. Sci. Technol. A 8, 515–519 (1990)
https://doi.org/10.1116/1.576378
In situ, real‐time monitoring of electrode surfaces by scanning tunneling microscopy. III. Surface structure of Pt and Pd electrodes
J. Vac. Sci. Technol. A 8, 520–524 (1990)
https://doi.org/10.1116/1.576379
Chloride ion‐induced large scale reconstruction on an electrochemically roughened Ag electrode
J. Vac. Sci. Technol. A 8, 530–533 (1990)
https://doi.org/10.1116/1.576381
Surface electronic structure of semiconductor ( p‐ and n‐Si) electrodes in electrolyte solution
J. Vac. Sci. Technol. A 8, 534–538 (1990)
https://doi.org/10.1116/1.576382
Scanning tunneling microscopy studies of semiconductor electrochemistry
J. Vac. Sci. Technol. A 8, 539–543 (1990)
https://doi.org/10.1116/1.576383
A scanning tunneling microscopy study of the surface microstructure of alpha‐ and beta‐lead dioxide
J. Vac. Sci. Technol. A 8, 544–548 (1990)
https://doi.org/10.1116/1.576384
Scanning tunneling spectroscopy on cleaved silicon pn junctions
J. Vac. Sci. Technol. A 8, 549–552 (1990)
https://doi.org/10.1116/1.576385
Power spectra of surface roughness of light emitting tunnel junctions measured by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 557–560 (1990)
https://doi.org/10.1116/1.576387
Scanning tip microscope for study of electrical inhomogeneity on submicron scale
J. Vac. Sci. Technol. A 8, 561–566 (1990)
https://doi.org/10.1116/1.576388
Observation of multiquantum well structure in air using a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 567–570 (1990)
https://doi.org/10.1116/1.576389
Nanometer scale structuring of silicon by direct indentation
J. Vac. Sci. Technol. A 8, 574–576 (1990)
https://doi.org/10.1116/1.576391
Fabrication of nucleation sites for nanometer size selective deposition by scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 581–584 (1990)
https://doi.org/10.1116/1.576393
Nanometer‐scale roughness study and indentation test with a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 585–589 (1990)
https://doi.org/10.1116/1.576394
Thermal noise in vacuum scanning tunneling microscopy at zero bias voltage
J. Vac. Sci. Technol. A 8, 590–593 (1990)
https://doi.org/10.1116/1.576348
Study of field‐emitting microstructures using a scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 594–597 (1990)
https://doi.org/10.1116/1.576349
Possible evidence of single electron tunneling with the scanning tunneling microscope at room temperature
J. Vac. Sci. Technol. A 8, 598–602 (1990)
https://doi.org/10.1116/1.576350
Structure of platinum ultrafine particles in Pt/C catalyst observed by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 608–609 (1990)
https://doi.org/10.1116/1.576352
Material contrast using the scanning tunneling microscope in ambient conditions
J. Vac. Sci. Technol. A 8, 618–620 (1990)
https://doi.org/10.1116/1.576355
Evaluation of elastic emission machined surfaces by scanning tunneling microscopy
Yuzo Mori; Kazuto Yamauchi; Katsuyoshi Endo; Takashi Ide; Hiromichi Toyota; Keitaro Nishizawa; Minoru Hasegawa
J. Vac. Sci. Technol. A 8, 621–624 (1990)
https://doi.org/10.1116/1.576357
A scanning tunneling microscopy/current imaging tunneling spectroscopy investigation of an organic molecule: 4‐cyano‐4′‐n‐heptylbiphenyl
J. Vac. Sci. Technol. A 8, 625–627 (1990)
https://doi.org/10.1116/1.576358
Observation of Vickers imprints by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 628–630 (1990)
https://doi.org/10.1116/1.576359
Surface roughness of rubbed polyimide film for liquid crystals by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 631–634 (1990)
https://doi.org/10.1116/1.576360
Imaging of biomolecules with the scanning tunneling microscope: Problems and prospects
J. Vac. Sci. Technol. A 8, 635–641 (1990)
https://doi.org/10.1116/1.576361
Molecular structure of organic compounds observed by high resolution scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 642–644 (1990)
https://doi.org/10.1116/1.576362
Direct observation of bioelectrochemical processes by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 645–647 (1990)
https://doi.org/10.1116/1.576363
Polypeptide structures imaged by the scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 648–651 (1990)
https://doi.org/10.1116/1.576364
Direct observations of enzymes and their complexes by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 652–654 (1990)
https://doi.org/10.1116/1.576365
Scanning tunneling microscopy for studying the biomaterial–biological tissue interface
J. Vac. Sci. Technol. A 8, 655–658 (1990)
https://doi.org/10.1116/1.576366
The topography of isolated molecules of copper–phthalocyanine adsorbed on GaAs(110)
J. Vac. Sci. Technol. A 8, 659–660 (1990)
https://doi.org/10.1116/1.576367
Scanning tunneling microscopy imaging of uncoated biological material
J. Vac. Sci. Technol. A 8, 661–666 (1990)
https://doi.org/10.1116/1.576368
Mechanisms for the deposition of nanometer‐sized structures from organic fluids using the scanning tunneling microscope
J. Vac. Sci. Technol. A 8, 667–671 (1990)
https://doi.org/10.1116/1.576369
Adsorption of liquid crystals imaged using scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 672–674 (1990)
https://doi.org/10.1116/1.576370
Scanning tunneling spectroscopy study of adsorbed molecules
J. Vac. Sci. Technol. A 8, 675–678 (1990)
https://doi.org/10.1116/1.576371
Reactive graphite etch and the structure of an adsorbed organic monolayer—a scanning tunneling microscopy study
J. Vac. Sci. Technol. A 8, 679–683 (1990)
https://doi.org/10.1116/1.576980
Scanning tunneling microscopy of the phosphatidylcholine bilayers
Changhong Luo; Chuanfeng Zhu; Like Ruan; Guizhen Huang; Changchun Dai; Zhengbo Cheng; Chunli Bai; Yaxian Su; Sanduo Xu; Kechun Lin; John D. Baldeschwieler
J. Vac. Sci. Technol. A 8, 684–686 (1990)
https://doi.org/10.1116/1.576981
Scanning tunneling microscopy of cytoskeletal proteins: Microtubules and intermediate filaments
Stuart Hameroff; Yovana Simic‐Krstic; Lawrence Vernetti; Y. C. Lee; Dror Sarid; Jerome Wiedmann; Virgil Elings; Kevin Kjoller; Robert McCuskey
J. Vac. Sci. Technol. A 8, 687–691 (1990)
https://doi.org/10.1116/1.576982
Application of scanning tunneling microscopy for imaging of CNBr‐peptides of type I collagen
J. Vac. Sci. Technol. A 8, 692–694 (1990)
https://doi.org/10.1116/1.576984
The surface structure of artificial and natural membranes as studied by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 695–697 (1990)
https://doi.org/10.1116/1.576985
Scanning tunneling microscopy of biomolecules
M. J. Miles; T. McMaster; H. J. Carr; A. S. Tatham; P. R. Shewry; J. M. Field; P. S. Belton; D. Jeenes; B. Hanley; M. Whittam; P. Cairns; V. J. Morris; N. Lambert
J. Vac. Sci. Technol. A 8, 698–702 (1990)
https://doi.org/10.1116/1.576986
Deoxyribonucleic acid structures visualized by scanning tunneling microscopy
J. Vac. Sci. Technol. A 8, 703–705 (1990)
https://doi.org/10.1116/1.576987
Scanning tunneling microscopic immunoassay: A preliminary experiment
J. Vac. Sci. Technol. A 8, 713–717 (1990)
https://doi.org/10.1116/1.576989
Low-temperature etching of silicon oxide and silicon nitride with hydrogen fluoride
Thorsten Lill, Mingmei Wang, et al.
Surface passivation approaches for silicon, germanium, and III–V semiconductors
Roel J. Theeuwes, Wilhelmus M. M. Kessels, et al.
Atomic layer deposition of nanofilms on porous polymer substrates: Strategies for success
Brian C. Welch, Jeanne Casetta, et al.