Skip Nav Destination
Issues
Ion mixing of Al2O3 and Al films on SiO2
J. Vac. Sci. Technol. A 6, 185–192 (1988)
https://doi.org/10.1116/1.574978
Interaction of atomic hydrogen with cleaved InP. I. The adsorption stage
J. Vac. Sci. Technol. A 6, 193–198 (1988)
https://doi.org/10.1116/1.574979
Interaction of atomic hydrogen with cleaved InP. II. The decomposition stage
J. Vac. Sci. Technol. A 6, 199–203 (1988)
https://doi.org/10.1116/1.574980
Evidence for oxygen underlayer formation at near‐liquid‐nitrogen temperatures on Zr(0001)
J. Vac. Sci. Technol. A 6, 210–212 (1988)
https://doi.org/10.1116/1.574982
Secondary ion mass spectrometry depth profiling of Mo/SiO2/Si structural samples
J. Vac. Sci. Technol. A 6, 213–216 (1988)
https://doi.org/10.1116/1.574983
Characterization and thermal desorption spectroscopy study on a new, low outgassing material surface for improved ultrahigh vacuum uses
J. Vac. Sci. Technol. A 6, 230–234 (1988)
https://doi.org/10.1116/1.574986
Rotary pump backstreaming: An analytical appraisal of practical results and the factors affecting them
J. Vac. Sci. Technol. A 6, 238–242 (1988)
https://doi.org/10.1116/1.575434
Reactively sputtered TeOx thin films for optical recording systems
J. Vac. Sci. Technol. A 6, 243–245 (1988)
https://doi.org/10.1116/1.575435
Erratum: Combining transmission probabilities of different diameter tubes [J. Vac. Sci. Technol. A 5, 2493 (1987)]
J. Vac. Sci. Technol. A 6, 248 (1988)
https://doi.org/10.1116/1.575437
Studies of superconductors using a low‐temperature, high‐field scanning tunneling microscope
J. R. Kirtley; R. M. Feenstra; A. P. Fein; S. I. Raider; W. J. Gallagher; R. Sandstrom; T. Dinger; M. W. Shafer; R. Koch; R. Laibowitz; B. Bumble
J. Vac. Sci. Technol. A 6, 259–262 (1988)
https://doi.org/10.1116/1.575438
Atomic resolution with the atomic force microscope on conductors and nonconductors
J. Vac. Sci. Technol. A 6, 271–274 (1988)
https://doi.org/10.1116/1.575441
Atomic force microscopy: General aspects and application to insulators
J. Vac. Sci. Technol. A 6, 275–278 (1988)
https://doi.org/10.1116/1.575424
Application of atomic force microscopy to magnetic materials
J. Vac. Sci. Technol. A 6, 279–282 (1988)
https://doi.org/10.1116/1.575425
Scanning tunneling microscopy and atomic force microscopy of the liquid–solid interface
J. Vac. Sci. Technol. A 6, 283–286 (1988)
https://doi.org/10.1116/1.575426
Atomic resolution atomic force microscopy of graphite and the ‘‘native oxide’’ on silicon
J. Vac. Sci. Technol. A 6, 287–290 (1988)
https://doi.org/10.1116/1.575427
Summary Abstract: Scanning tunneling microscopy and atomic force microscopy for microtribology
J. Vac. Sci. Technol. A 6, 291–292 (1988)
https://doi.org/10.1116/1.575428
Experimental study of forces between a tunnel tip and the graphite surface
J. Vac. Sci. Technol. A 6, 293–295 (1988)
https://doi.org/10.1116/1.575429
Tunneling through localized barriers with application to scanning tunneling microscopy: New scattering theoretic approach and results
J. Vac. Sci. Technol. A 6, 296–299 (1988)
https://doi.org/10.1116/1.575430
Summary Abstract: Tunneling current between two nonplanar surfaces
J. Vac. Sci. Technol. A 6, 311–312 (1988)
https://doi.org/10.1116/1.575432
Theoretical scanning tunneling microscopy and atomic force microscopy study of graphite including tip–surface interaction
J. Vac. Sci. Technol. A 6, 313–318 (1988)
https://doi.org/10.1116/1.575443
Theory of tunneling in metal–superconductor devices: Supercurrents in the superconductor gap at zero temperature
J. Vac. Sci. Technol. A 6, 323–326 (1988)
https://doi.org/10.1116/1.575445
Model calculation for the tunnel current from a tungsten tip to a Ni(100) surface with a chemisorbed oxygen atom
J. Vac. Sci. Technol. A 6, 327–330 (1988)
https://doi.org/10.1116/1.575446
Summary Abstract: Scanning tunneling microscopy investigation of 2H‐MoS2: A layered semiconducting transition‐metal dichalcogenide
J. Vac. Sci. Technol. A 6, 336–337 (1988)
https://doi.org/10.1116/1.575408
Detection of atomic surface structure on NbSe2 and NbSe3 at 77 and 4.2 K using scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 338–343 (1988)
https://doi.org/10.1116/1.575409
Scanning tunneling spectroscopy study on graphite and 2H–NbSe2
H. Bando; N. Morita; H. Tokumoto; W. Mizutani; K. Watanabe; A. Homma; S. Wakiyama; M. Shigeno; K. Endo; K. Kajimura
J. Vac. Sci. Technol. A 6, 344–348 (1988)
https://doi.org/10.1116/1.575410
Imaging graphite in air by scanning tunneling microscopy: Role of the tip
J. Vac. Sci. Technol. A 6, 349–353 (1988)
https://doi.org/10.1116/1.575411
Scanning tunneling microscopy of Kish graphite and highly oriented pyrolytic graphite in air
J. Vac. Sci. Technol. A 6, 354–357 (1988)
https://doi.org/10.1116/1.575412
A study of graphite and intercalated graphite by scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 360–362 (1988)
https://doi.org/10.1116/1.575414
Scanning tunneling microscopy of graphite adsorbed metal species and sliding charge‐density wave systems
J. Vac. Sci. Technol. A 6, 363–367 (1988)
https://doi.org/10.1116/1.575415
Scanning tunneling microscopy of Langmuir–Blodgett films on graphite
J. Vac. Sci. Technol. A 6, 368–370 (1988)
https://doi.org/10.1116/1.575416
Summary Abstract: Scanning tunneling microscopy imaging of molybdenum disulfide
J. Vac. Sci. Technol. A 6, 371 (1988)
https://doi.org/10.1116/1.575417
Tip contamination effects in ambient pressure scanning tunneling microscopy imaging of graphite
J. Vac. Sci. Technol. A 6, 372–375 (1988)
https://doi.org/10.1116/1.575418
Summary Abstract: A scanning tunneling microscope combined with a scanning field emission microscope
J. Vac. Sci. Technol. A 6, 379 (1988)
https://doi.org/10.1116/1.575420
Design of a scanning tunneling microscope for biological applications
J. Vac. Sci. Technol. A 6, 383–385 (1988)
https://doi.org/10.1116/1.575422
An ultrahigh vacuum scanning tunneling microscope with interchangeable samples and tips
J. Vac. Sci. Technol. A 6, 386–389 (1988)
https://doi.org/10.1116/1.575423
Data processing for scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 393–397 (1988)
https://doi.org/10.1116/1.575402
Image processing techniques for obtaining registration information with scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 398–400 (1988)
https://doi.org/10.1116/1.575403
Imaging of laser generated surface ripples on silicon
J. Vac. Sci. Technol. A 6, 401–403 (1988)
https://doi.org/10.1116/1.575404
Scanning tunneling microscopy topography of electron‐beam evaporated niobium thin films in Nb–NbOx–Pb tunnel junctions on quartz substrates
J. Vac. Sci. Technol. A 6, 404–407 (1988)
https://doi.org/10.1116/1.575405
Investigation of silicon in air with a fast scanning tunneling microscope
J. Vac. Sci. Technol. A 6, 408–411 (1988)
https://doi.org/10.1116/1.575406
Scanning tunneling microscopy and optical spectrum studies of light‐emitting tunnel junctions
J. Vac. Sci. Technol. A 6, 415–418 (1988)
https://doi.org/10.1116/1.575385
Scanning tunneling microscopy of silver, gold, and aluminum monomers and small clusters on graphite
J. Vac. Sci. Technol. A 6, 419–423 (1988)
https://doi.org/10.1116/1.575386
Scanning tunneling microscopy of semiconductor clusters
J. Vac. Sci. Technol. A 6, 424–427 (1988)
https://doi.org/10.1116/1.575387
Scanning tunneling microscopy imaging of microbridges under scanning electron microscopy control
J. Vac. Sci. Technol. A 6, 436–439 (1988)
https://doi.org/10.1116/1.575390
Observation of microfabricated patterns by scanning tunneling microscopy
S. Okayama; M. Komuro; W. Mizutani; H. Tokumoto; M. Okano; K. Shimizu; Y. Kobayashi; F. Matsumoto; S. Wakiyama; M. Shigeno; F. Sakai; S. Fujiwara; O. Kitamura; M. Ono; K. Kajimura
J. Vac. Sci. Technol. A 6, 440–444 (1988)
https://doi.org/10.1116/1.575391
Scanning tunneling microscope tip structures
Ruth Nicolaides; Yong Liang; William E. Packard; Zhou‐Wu Fu; Howard A. Blackstead; K. K. Chin; John D. Dow; Jacek K. Furdyna; Wei Min Hu; Robert C. Jaklevic; William J. Kaiser; Alan R. Pelton; Mary V. Zeller; Joseph Bellina, Jr.
J. Vac. Sci. Technol. A 6, 445–447 (1988)
https://doi.org/10.1116/1.575392
Application of the scanning tunneling microscope to insulating surfaces
J. Vac. Sci. Technol. A 6, 448–453 (1988)
https://doi.org/10.1116/1.575393
Scanning tunneling microscopy of β‐SiC and YBa2Cu3O7−x ceramic surfaces
J. Vac. Sci. Technol. A 6, 457–460 (1988)
https://doi.org/10.1116/1.575395
Tunneling microscopy of silicon and germanium: Si(111)7×7, SnGe(111)7×7, GeSi(111)5×5, Si(111)9×9, Ge(111)2×8, Ge(100)2×1, Si(110)5×1
J. Vac. Sci. Technol. A 6, 472–477 (1988)
https://doi.org/10.1116/1.575399
Reconstruction on rows and steps of Si(112) and Si(223)
J. Vac. Sci. Technol. A 6, 478–482 (1988)
https://doi.org/10.1116/1.575400
On the interpretation of current images in scanning tunneling spectroscopy of Si(111)7×7
J. Vac. Sci. Technol. A 6, 483–487 (1988)
https://doi.org/10.1116/1.575364
Tunneling microscopy of steps on vicinal Ge(001) and Si(001) surfaces
J. Vac. Sci. Technol. A 6, 493–496 (1988)
https://doi.org/10.1116/1.575366
Summary Abstract: Structure analysis of the GaAs(110) surface by scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 497–498 (1988)
https://doi.org/10.1116/1.575367
Voltage‐dependent scanning tunneling microscopy imaging of semiconductor surfaces
J. Vac. Sci. Technol. A 6, 499–507 (1988)
https://doi.org/10.1116/1.575368
A scanning tunneling microscopy study of the reaction of Si(001)‐(2×1) with NH3
J. Vac. Sci. Technol. A 6, 508–511 (1988)
https://doi.org/10.1116/1.575369
Summary Abstract: Scanning tunneling microscopy studies on Au/Si(111) interfaces
J. Vac. Sci. Technol. A 6, 517–518 (1988)
https://doi.org/10.1116/1.575371
Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen‐terminated silicon surfaces
J. Vac. Sci. Technol. A 6, 519–523 (1988)
https://doi.org/10.1116/1.575372
Study of metal surfaces by scanning tunneling microscopy with field ion microscopy
J. Vac. Sci. Technol. A 6, 524–528 (1988)
https://doi.org/10.1116/1.575373
Icosahedral alloys studied by scanning tunneling microscopy
R. Wiesendanger; L. Rosenthaler; H.‐R. Hidber; L. Eng; U. Staufer; H.‐J. Güntherodt; M. Düggelin; R. Guggenheim
J. Vac. Sci. Technol. A 6, 529–530 (1988)
https://doi.org/10.1116/1.575374
Scanning tunneling microscopy study of the Re(0001) surface passivated by one‐half a monolayer of sulfur in an atmospheric environment
J. Vac. Sci. Technol. A 6, 531–533 (1988)
https://doi.org/10.1116/1.575375
Current–voltage characteristics of metal/vacuum/metal tunneling
J. Vac. Sci. Technol. A 6, 534–536 (1988)
https://doi.org/10.1116/1.575376
Surface modification in the nanometer range by the scanning tunneling microscope
J. Vac. Sci. Technol. A 6, 537–539 (1988)
https://doi.org/10.1116/1.575377
Imaging deoxyribose nucleic acid molecules on a metal surface under water by scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 544–547 (1988)
https://doi.org/10.1116/1.575379
Scanning tunneling microscopy imaging of biological structures
J. Vac. Sci. Technol. A 6, 548–552 (1988)
https://doi.org/10.1116/1.575380
Summary Abstract: Preparation of polymer molecules for examination by scanning tunneling microscopy
J. Vac. Sci. Technol. A 6, 553–554 (1988)
https://doi.org/10.1116/1.575381
Low-resistivity molybdenum obtained by atomic layer deposition
Kees van der Zouw, Bernhard Y. van der Wel, et al.
Many routes to ferroelectric HfO2: A review of current deposition methods
Hanan Alexandra Hsain, Younghwan Lee, et al.
Gas-phase etching mechanism of silicon oxide by a mixture of hydrogen fluoride and ammonium fluoride: A density functional theory study
Romel Hidayat, Khabib Khumaini, et al.