Skip Nav Destination
Issues
Low‐energy hydrogen ion bombardment damage in silicon: An in situ optical investigation
J. Vac. Sci. Technol. A 5, 2797–2803 (1987)
https://doi.org/10.1116/1.574310
Electron energy‐loss studies on radio frequency sputtered a‐Ge1−xCx:H films
J. Vac. Sci. Technol. A 5, 2804–2808 (1987)
https://doi.org/10.1116/1.574311
Electron beam effects in the analysis of compound semiconductors and devices
J. Vac. Sci. Technol. A 5, 2814–2818 (1987)
https://doi.org/10.1116/1.574313
Initial stages of growth during boron carbide chemical vapor deposition
J. Vac. Sci. Technol. A 5, 2823–2828 (1987)
https://doi.org/10.1116/1.574315
Ion beam mixing of Al with GaAs
J. Vac. Sci. Technol. A 5, 2842–2844 (1987)
https://doi.org/10.1116/1.574318
Direct E0 energy gaps of bismuth‐containing III–V alloys predicted using quantum dielectric theory
J. Vac. Sci. Technol. A 5, 2845–2848 (1987)
https://doi.org/10.1116/1.574319
Mechanism of two‐dimensional AgAu alloy formation on Ru(001)
J. Vac. Sci. Technol. A 5, 2849–2853 (1987)
https://doi.org/10.1116/1.574320
Correlation between resistance behavior and mass transport in Al–Si/Ti multilayer interconnects
J. Vac. Sci. Technol. A 5, 2854–2858 (1987)
https://doi.org/10.1116/1.574254
Effect of negative substrate bias on the film structure and magnetic properties in sputter‐deposited Co–Cr films
J. Vac. Sci. Technol. A 5, 2859–2863 (1987)
https://doi.org/10.1116/1.574255
Compositional variations in doped iron oxide magnetic thin films
J. Vac. Sci. Technol. A 5, 2864–2868 (1987)
https://doi.org/10.1116/1.574256
Dense crystalline ZrO2 thin films deposited by pulsed‐laser evaporation
J. Vac. Sci. Technol. A 5, 2869–2874 (1987)
https://doi.org/10.1116/1.574257
Pyroelectric calorimeter for photothermal studies of thin films and adsorbates
J. Vac. Sci. Technol. A 5, 2875–2889 (1987)
https://doi.org/10.1116/1.574258
The effect of gas scattering on the deposition profile of optical thin films
J. Vac. Sci. Technol. A 5, 2898–2901 (1987)
https://doi.org/10.1116/1.574261
Effect of baking temperature and air exposure on the outgassing rate of type 316L stainless steel
J. Vac. Sci. Technol. A 5, 2902–2906 (1987)
https://doi.org/10.1116/1.574262
Movable needle type of liquid‐metal‐ion sources for boron and phosphorus ions
J. Vac. Sci. Technol. A 5, 2907–2911 (1987)
https://doi.org/10.1116/1.574263
Formation of (M+Me)± ions from ultrahigh‐vacuum‐prepared amino acid layers on metals
J. Vac. Sci. Technol. A 5, 2912–2916 (1987)
https://doi.org/10.1116/1.574264
Thin‐film temperature sensors deposited by radio frequency cathodic sputtering
J. Vac. Sci. Technol. A 5, 2917–2923 (1987)
https://doi.org/10.1116/1.574265
Separation of gas phase and electron‐stimulated‐desorption ions in the modulated‐ion‐current pressure gauge
J. Vac. Sci. Technol. A 5, 2924–2926 (1987)
https://doi.org/10.1116/1.574266
Analysis of forces on inertial confinement fusion targets during ablation layer coating
J. Vac. Sci. Technol. A 5, 2941–2944 (1987)
https://doi.org/10.1116/1.574269
Dynamic pumping and pulsed outgassing in waveguides and vacuum systems for plasma physics experiments
J. Vac. Sci. Technol. A 5, 2945–2953 (1987)
https://doi.org/10.1116/1.574270
Radioluminescence of individual deuterium–tritium‐filled glass microbubble laser targets
J. Vac. Sci. Technol. A 5, 2954–2956 (1987)
https://doi.org/10.1116/1.574271
Kinetics and dynamics of the nitric oxide/ammonia interaction on Pt(111)
J. Vac. Sci. Technol. A 5, 2959–2960 (1987)
https://doi.org/10.1116/1.574273
Direct recoil analysis of light elements (H, C, O, N) on polyimide surfaces (poly‐Isoindolo quinazoline dione)
J. Vac. Sci. Technol. A 5, 2961–2962 (1987)
https://doi.org/10.1116/1.574274
The pumping character of the magnetic suspension‐type turbomolecular pump of high flow rate
Tadao Ishizawa; Masaharu Miki; Chiaki Urano; Toshiaki Kawashima; Masayuki Yamamoto; Noriaki Masubuchi
J. Vac. Sci. Technol. A 5, 2965–2967 (1987)
https://doi.org/10.1116/1.574232
A flexible sample transfer/insertion system for ultrahigh vacuum surface studies
J. Vac. Sci. Technol. A 5, 2970–2972 (1987)
https://doi.org/10.1116/1.574234
A simple technique for low‐energy electron diffraction studies of beam‐sensitive samples
J. Vac. Sci. Technol. A 5, 2975–2976 (1987)
https://doi.org/10.1116/1.574237
Diamondlike carbon high‐temperature diffusion barrier for copper‐gasketed stainless‐steel flanges
J. Vac. Sci. Technol. A 5, 2977 (1987)
https://doi.org/10.1116/1.574239
Spinning rotor gauge carousel
J. Vac. Sci. Technol. A 5, 2979 (1987)
https://doi.org/10.1116/1.574241
Computer program for photoemission data analysis and display
J. Vac. Sci. Technol. A 5, 2982–2985 (1987)
https://doi.org/10.1116/1.574244
Band structure and electronic properties of mercury chalcogenide alloys containing iron
J. Vac. Sci. Technol. A 5, 2995–3002 (1987)
https://doi.org/10.1116/1.574246
Extended x‐ray absorption fine‐structure studies of semiconductor structure
J. Vac. Sci. Technol. A 5, 3003–3008 (1987)
https://doi.org/10.1116/1.574247
Electronic and transport properties of HgCdTe and HgZnTe
J. Vac. Sci. Technol. A 5, 3014–3018 (1987)
https://doi.org/10.1116/1.574249
Bond relaxation in Hg1−xCdxTe and related alloys
J. Vac. Sci. Technol. A 5, 3019–3023 (1987)
https://doi.org/10.1116/1.574250
Investigation of structural properties of epitaxially grown Hg0.84Zn0.16Te under application of hydrostatic pressure
J. Vac. Sci. Technol. A 5, 3024–3025 (1987)
https://doi.org/10.1116/1.574251
Angle resolved photoemission study of the alloy scattering effect in Hg1−xCdxTe
C. K. Shih; J. A. Silberman; A. K. Wahi; G. P. Carey; I. Lindau; W. E. Spicer; M. A. Berding; A. Sher
J. Vac. Sci. Technol. A 5, 3026–3030 (1987)
https://doi.org/10.1116/1.574252
Photoemission studies of core level shifts in HgCdTe, CdMnTe, and HgZnTe
J. Vac. Sci. Technol. A 5, 3031–3034 (1987)
https://doi.org/10.1116/1.574253
Majority‐carrier mobility in p‐type Hg1−xCdxTe
J. Vac. Sci. Technol. A 5, 3035–3039 (1987)
https://doi.org/10.1116/1.574210
Free‐carrier spin‐induced Faraday rotation in HgCdTe and HgMnTe
J. Vac. Sci. Technol. A 5, 3040–3042 (1987)
https://doi.org/10.1116/1.574211
Epitaxial growth, characterization, and phase diagram of HgZnTe
J. Vac. Sci. Technol. A 5, 3043–3047 (1987)
https://doi.org/10.1116/1.574212
Characterization of fully lattice‐matched multilayer ZnHgCdTe structures grown by Te‐rich liquid phase epitaxy
J. Vac. Sci. Technol. A 5, 3048–3051 (1987)
https://doi.org/10.1116/1.574213
Dislocations in HgCdTe/CdTe and HgCdTe/CdZnTe heterojunctions
J. Vac. Sci. Technol. A 5, 3052–3054 (1987)
https://doi.org/10.1116/1.574214
Analysis of junction depths and lattice point defect interdiffusion coefficients in Hg0.8Cd0.2Te
J. Vac. Sci. Technol. A 5, 3055–3058 (1987)
https://doi.org/10.1116/1.574215
Controlled substitutional doping of CdTe thin films grown by photoassisted molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3059–3063 (1987)
https://doi.org/10.1116/1.574216
Low‐temperature photoluminescence study of doped CdTe films grown by photoassisted molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3064–3069 (1987)
https://doi.org/10.1116/1.574217
Determination of the CdTe–HgTe(111) heterojunction valence‐band discontinuity by x‐ray photoemission spectroscopy
J. Vac. Sci. Technol. A 5, 3070–3073 (1987)
https://doi.org/10.1116/1.574218
Quantized Hall effect and weak localization effects in two‐dimensional HgTe–CdTe superlattices
J. Vac. Sci. Technol. A 5, 3079–3084 (1987)
https://doi.org/10.1116/1.574220
Properties of Hg‐based films and superlattices grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3085–3088 (1987)
https://doi.org/10.1116/1.574221
Far‐infrared magnetoabsorption in HgTe–CdTe and Hg1−xMnxTe–HgTe superlattices
J. Vac. Sci. Technol. A 5, 3089–3092 (1987)
https://doi.org/10.1116/1.574222
Magnetotransport measurements of p‐type Hg1−xCdxTe based superlattices and heterojunctions
J. Vac. Sci. Technol. A 5, 3093–3095 (1987)
https://doi.org/10.1116/1.574223
Theoretical studies of electronic properties of semimagnetic superlattices in a magnetic field
J. Vac. Sci. Technol. A 5, 3096–3101 (1987)
https://doi.org/10.1116/1.574224
Subband related structure in the absorption coefficient of HgTe/CdTe superlattices
J. Vac. Sci. Technol. A 5, 3102–3106 (1987)
https://doi.org/10.1116/1.574225
Summary Abstract: HgTe–CdTe superlattices: Experiment and theoretical band gap and the ease at controlling the cutoff wavelength
J. Vac. Sci. Technol. A 5, 3107–3109 (1987)
https://doi.org/10.1116/1.574226
Electrical measurements of molecular‐beam epitaxy HgTe–CdTe superlattices and absorption coefficient analysis of molecular‐beam epitaxy HgTe
J. Vac. Sci. Technol. A 5, 3110–3114 (1987)
https://doi.org/10.1116/1.574227
Far‐infrared magnetospectroscopy of HgTe and Hg1−xMnxTe epilayers grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3115–3118 (1987)
https://doi.org/10.1116/1.574228
Mercury cadmium telluride n‐isotype heterojunctions grown in situ by molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3119–3123 (1987)
https://doi.org/10.1116/1.574229
Interdiffusion and related defect mechanisms in the HgTe–CdTe system
J. Vac. Sci. Technol. A 5, 3124–3128 (1987)
https://doi.org/10.1116/1.574230
Transmission electron microscope study of Hg‐based multilayer structures
J. Vac. Sci. Technol. A 5, 3129–3132 (1987)
https://doi.org/10.1116/1.574231
(100) versus (111)B crystallographic orientation of Hg1−xCdxTe grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. A 5, 3133–3138 (1987)
https://doi.org/10.1116/1.574853
In situ spectroscopic ellipsometry during molecular‐beam epitaxy of cadmium mercury telluride
J. Vac. Sci. Technol. A 5, 3139–3142 (1987)
https://doi.org/10.1116/1.574854
The first observation of reflection high‐energy electron diffraction intensity oscillations during the growth and sublimation of CdTe
J. Vac. Sci. Technol. A 5, 3143–3146 (1987)
https://doi.org/10.1116/1.574855
Resonant tunneling through a HgTe/Hg1−xCdxTe double‐barrier, single‐quantum‐well heterostructure
J. Vac. Sci. Technol. A 5, 3147–3149 (1987)
https://doi.org/10.1116/1.574856
III–V strained layer supperlattices for long‐wavelength detector applications: Recent progress
J. Vac. Sci. Technol. A 5, 3150–3152 (1987)
https://doi.org/10.1116/1.574857
HgTe–CdTe superlattices and Hg1−xCdxTe grown by low‐temperature metalorganic chemical vapor deposition
J. Vac. Sci. Technol. A 5, 3153–3156 (1987)
https://doi.org/10.1116/1.574858
Far‐infrared analysis of alloy structure in HgTe–CdTe superlattices
J. Vac. Sci. Technol. A 5, 3157–3160 (1987)
https://doi.org/10.1116/1.574859
Thermal stability among HgTe/CdTe, Hg1−xCdxTe/CdTe, and Hg1−xMnxTe/CdTe superlattices
J. Vac. Sci. Technol. A 5, 3161–3165 (1987)
https://doi.org/10.1116/1.574860
Ion implanted junction formation in Hg1−xCdxTe
J. Vac. Sci. Technol. A 5, 3166–3170 (1987)
https://doi.org/10.1116/1.574861
Paramagnetic point defects in boron‐implanted Hg0.7Cd0.3Te and CdTe
J. Vac. Sci. Technol. A 5, 3171–3174 (1987)
https://doi.org/10.1116/1.574862
Use of native oxide and multiple‐step anneals to activate boron implanted Hg1−xCdxTe
J. Vac. Sci. Technol. A 5, 3175–3179 (1987)
https://doi.org/10.1116/1.574863
Study of implantation in HgCdTe by electrolyte electroreflectance
J. Vac. Sci. Technol. A 5, 3180–3183 (1987)
https://doi.org/10.1116/1.574864
Summary Abstract: Photoreflectance in narrow‐gap Hg1−xCdxTe and Hg1−yZnyTe
J. Vac. Sci. Technol. A 5, 3184–3185 (1987)
https://doi.org/10.1116/1.574833
Spatial mapping of electrically active defects in HgCdTe using laser beam‐induced current
J. Vac. Sci. Technol. A 5, 3186–3189 (1987)
https://doi.org/10.1116/1.574834
Systematics of metal contacts to Hg1−xCdxTe
J. Vac. Sci. Technol. A 5, 3190–3192 (1987)
https://doi.org/10.1116/1.574835
Local stoichiometry and atomic interdiffusion during reactive metal/mercury–cadmium–telluride junction formation
J. Vac. Sci. Technol. A 5, 3193–3197 (1987)
https://doi.org/10.1116/1.574836
Photoemission studies of the room‐temperature Si/Hg1−xCdxTe, Si/HgTe, and Si/CdTe interfaces
J. Vac. Sci. Technol. A 5, 3198–3202 (1987)
https://doi.org/10.1116/1.574837
Photoemission study of Cd loss and its effect on the electronic structure of etched Hg1−xCdxTe surfaces
J. Vac. Sci. Technol. A 5, 3203–3206 (1987)
https://doi.org/10.1116/1.574838
Characterization of anodic sulfide films on Hg0.78Cd0.22Te
J. Vac. Sci. Technol. A 5, 3207–3210 (1987)
https://doi.org/10.1116/1.574839
Summary Abstract: Electrostatic levitation in vacuum and possible gauge applications
J. Vac. Sci. Technol. A 5, 3224–3225 (1987)
https://doi.org/10.1116/1.574841
Ultrahigh vacuum measurements in China
J. Vac. Sci. Technol. A 5, 3226–3229 (1987)
https://doi.org/10.1116/1.574842
Summary Abstract: Gauging requirements and practices for storage rings and accelerators
J. Vac. Sci. Technol. A 5, 3232–3233 (1987)
https://doi.org/10.1116/1.574844
Residual currents in several commercial ultrahigh vacuum Bayard–Alpert gauges
J. Vac. Sci. Technol. A 5, 3234–3241 (1987)
https://doi.org/10.1116/1.574845
Secondary electrons in ion gauges
J. Vac. Sci. Technol. A 5, 3242–3243 (1987)
https://doi.org/10.1116/1.574846
Summary Abstract: A thin‐collector Bayard–Alpert gauge for 10−12 Torr vacuum
J. Vac. Sci. Technol. A 5, 3244–3246 (1987)
https://doi.org/10.1116/1.574847
Summary Abstract: Some observations on the calibration of two types of ultrahigh vacuum ion gauges
J. Vac. Sci. Technol. A 5, 3247–3248 (1987)
https://doi.org/10.1116/1.574848
Summary Abstract: Surface phenomena and their influence on ultrahigh vacuum gauges
J. Vac. Sci. Technol. A 5, 3249 (1987)
https://doi.org/10.1116/1.574849