Electrical measurements were made on silicon on sapphire (SOS) before processing to the device stage. The objective was to determine process conditions for producing high‐resistivity, high‐mobility SOS. The phenomenological approach was used to study variations in electrical properties across a wafer. Conductivity‐type measurements were made where large variations in the resistivity occurred. A p‐type autodoping pattern was observed and traced to aluminum diffusion into the episilicon layer from sapphire substrate defect areas which were identified by scanning electron microscopy. Process parameters were adjusted to eliminate patterned autodoping. The average of point‐to‐point resistivity parameter values was then equal to the value determined for the whole wafer using peripheral contacts. The resistivity parameter was influenced both by carrier concentration and microstructure. The Hall mobility was highest for material where patterned autodoping was absent. If the silicon deposition temperature was lowered too much, the Hall mobility decreased significantly. Resistivity parameter mapping and mobility measurements were necessary to fix epigrowth parameters.
Skip Nav Destination
Article navigation
Research Article|
May 01 1989
The electrical characterization of whole wafer silicon on sapphire for process control
Donald McLeod, Jr.;
Donald McLeod, Jr.
Union Carbide Corp., Tarrytown, New York 10591
Search for other works by this author on:
D. A. Shields;
D. A. Shields
Union Carbide Corp., Tarrytown, New York 10591
Search for other works by this author on:
J. E. A. Maurits;
J. E. A. Maurits
750 South 32nd Street, Washougal, Washington 98671
Search for other works by this author on:
D. H. Forbes
D. H. Forbes
750 South 32nd Street, Washougal, Washington 98671
Search for other works by this author on:
J. Vac. Sci. Technol. A 7, 1322–1328 (1989)
Article history
Received:
August 19 1988
Accepted:
November 21 1988
Citation
Donald McLeod, D. A. Shields, J. E. A. Maurits, D. H. Forbes; The electrical characterization of whole wafer silicon on sapphire for process control. J. Vac. Sci. Technol. A 1 May 1989; 7 (3): 1322–1328. https://doi.org/10.1116/1.576279
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00