Titanium dioxide in its anatase form is of significant interest nowadays due to numerous properties such as biocompatibility, photoactivity under ultraviolet irradiation, or corrosion resistance. In this paper, titanium dioxide (TiO2) films are synthesized with a controlled substrate temperature going up to 673 K. Crystalline anatase was synthesized in a low power atmospheric pressure dielectric barrier discharge in a single step process. The effect of deposition parameters (plasma gas, the voltage input, precursor flow, deposition time, and substrate temperature) on the crystal size, crystallinity, and coating morphology was studied. It shows that the crystal size can be tuned, that the layers can have a transition from hydrophilicity to hydrophobicity, and that the coating morphology can be modified by optimizing these parameters. Finally, it is found that crystalline anatase TiO2 can be grown at a substrate temperature as low as 523 K in an atmospheric pressure plasma enhanced chemical vapor deposition process.

1.
Q.
Junnan
,
L.
Huimin
,
L.
Guihong
, and
C.
Yao
,
Chem. Eng. J.
491
,
151773
(
2024
).
2.
S.
Huili
,
S.
Chaoyun
,
J.
Zhitong
,
Z.
Long
,
W.
Haifeng
, and
C.
Jingbo
,
RSC Adv.
12
,
33641
(
2022
).
3.
N. B.
Saleh
,
A.
Khalid
,
Y.
Tian
,
C.
Ayres
,
I. V.
Sabaraya
,
J.
Pietari
,
D.
Hanigan
,
I.
Chowdhury
, and
O. G.
Apul
,
Environ. Sci.: Water Res. Technol.
5
,
198
(
2019
).
4.
S.
Almaie
,
V.
Vatanpour
,
M. H.
Rasoulifard
, and
I.
Koyuncu
,
Chemosphere
306
,
135655
(
2022
).
5.
W. A.
Thompson
,
C.
Perier
, and
M. M.
Maroto-Valer
,
Appl. Catal., B
238
,
136
(
2018
).
6.
M.
Rafique
,
S.
Hajra
,
M.
Irshad
,
M.
Usman
,
M.
Imran
,
M. A.
Assiri
, and
W. M.
Ashraf
,
ACS Omega
8
,
25640
(
2023
).
7.
D.
Wang
,
Q.
Yang
,
Y.
Guo
,
X.
Liu
,
J.
Shi
, and
J.
Zhang
,
Mater. Lett.
65
,
2526
(
2011
).
9.
Z. F.
Yin
,
L.
Wu
,
H. G.
Yang
, and
Y. H.
Su
,
Phys. Chem. Chem. Phys.
15
,
4844
(
2013
).
10.
Y.
Ohko
,
S.
Saitoh
,
T.
Tatsuma
, and
A.
Fujishima
,
J. Electrochem. Soc.
148
,
B24
(
2001
).
11.
S.
Obregón
and
V.
Rodríguez-González
,
J. Sol-Gel Sci. Technol.
102
,
125
(
2022
).
12.
J.
Yu
,
J. C.
Yu
,
M. K.-P.
Leung
,
W.
Ho
,
B.
Cheng
,
X.
Zhao
, and
J.
Zhao
,
J. Catal.
217
,
69
(
2003
).
13.
S.
Mahsid
,
M.
Askari
, and
M.
Sasani Ghamsari
,
J. Mater. Process. Technol.
189
,
296300
(
2007
).
14.
Y. M.
Abdulraheem
,
S.
Ghoraishi
,
L.
Arockia-Thai
,
S. K.
Zachariah
, and
M.
Ghannam
,
Adv. Mater. Sci. Eng.
2013
,
1
(
2013
).
15.
A.
Borras
,
J. R.
Sanchez-Valencia
,
R.
Wildmer
,
V. J.
Rico
,
A.
Justo
, and
A. R.
Gonzalez-Elipe
,
Cryst. Growth Des.
9
,
2868
(
2009
).
16.
G. A.
Battiston
,
R.
Gerbasi
,
A.
Gregori
,
M.
Porchia
,
S.
Cattarin
, and
G. A.
Rizzi
,
Thin Solid Films
371
,
126
(
2000
).
17.
M.
Hans
,
J. M.
Schneider
,
A.
Matthews
, and
C.
Mitterer
,
Surf. Coat. Technol.
494
,
131486
(
2024
).
18.
D.
Merche
,
N.
Vandecasteele
, and
F.
Reniers
,
Thin Solid Films
520
,
4219
(
2012
).
19.
Y.
Xu
,
Y.
Zhang
,
L.
Li
,
K.
Ding
,
Y.
Guo
,
J.
Shi
,
X.
Huang
, and
J.
Zhang
,
Plasma Chem. Plasma P.
39
,
937947
(
2019
).
20.
S.
Banerjee
,
E.
Adhikari
,
P.
Sapkota
,
A.
Sebastian
, and
S.
Ptasinska
,
Materials
13
,
2931
(
2020
).
21.
S.
Collette
et al,
Surf. Coat. Technol.
289
,
172
(
2016
).
22.
K.
Baba
,
S.
Bulou
,
P.
Choquet
, and
N. D.
Boscher
,
ACS Appl. Mater. Interfaces
9
,
13733
(
2017
).
23.
T.
Homola
,
P.
Dzik
,
M.
Vesely
,
J.
Kelar
,
M.
Cernak
, and
M.
Weiter
,
ACS Appl. Mater. Interfaces
8
,
33562
(
2016
).
24.
Y.
Gazal
,
C.
Chazelas
,
C.
Dublanche-Tixier
, and
P.
Tristant
,
J. Appl. Phys.
121
,
123301
(
2017
).
25.
A.
Perraudeau
,
C.
Dublanche-Tixier
,
P.
Tristant
, and
C.
Chazelas
,
Appl. Surf. Sci.
493
,
703
(
2019
).
26.
K.
Navaneetha Pandiyaraj
et al,
Surf. Coat. Technol.
389
,
125642
(
2020
).
27.
Q.
Chen
,
Q.
Liu
,
J.
Hubert
,
W.
Huang
,
K.
Baert
,
G.
Wallaert
,
H.
Terryn
,
M.-P.
Delplancke-Ogletree
, and
F.
Reniers
,
Surf. Coat. Technol.
310
,
173
(
2017
).
28.
Q.
Chen
et al,
Thin Solid Films
664
,
90
(
2018
).
29.
A.
Chauvin
,
C.
Bittencourt
,
M.
Galais
,
L.
Sauvage
,
M.
Bellefroid
,
C.
Van Lint
,
A.
Op de Beeck
,
R.
Snyders
, and
F.
Reniers
,
Surf. Coat. Technol.
472
,
129936
(
2023
).
30.
A.
Remy
,
M. Serigne
Fall
,
T.
Segato
,
S.
Godet
,
M.-P.
Delplancke-Ogletree
,
P.
Panini
,
Y.
Eerts
, and
F.
Reniers
,
Thin Solid Films
688
,
137437
(
2019
).
31.
M.
Brabant
et al,
Surf. Coat. Technol.
495
,
131559
(
2025
).
32.
M.
Brabant
,
A.
Demaude
,
J.
Zveny
,
A.
Remy
,
T.
Segato
,
D.
Petitjean
,
M.-P.
Delplancke-Ogletree
, and
F.
Reniers
,
J. Vac. Sci. Technol. A
42
,
023008
(
2024
).
34.
J.
Zhang
,
P.
Zhou
,
J.
Liu
, and
J.
Yu
,
Phys. Chem. Chem. Phys.
16
,
20382
(
2014
).
35.
L.
Youssef
,
A. J.
Kinfack Leoga
,
S.
Roualdes
,
J.
Bassil
,
M.
Zakhour
,
V.
Rouessac
,
A.
Ayral
, and
M.
Nakhl
,
J. Eur. Ceram. Soc.
37
,
5289
(
2017
).
36.
W.
Yang
and
C. A.
Wolden
,
Thin Solid Films
515
,
1708
(
2006
).
37.
A.
Borrás
,
J.
Cotrino
, and
A. R.
González-Elipe
,
J. Electrochem. Soc.
154
,
P152
(
2007
).
38.
A.
Remy
and
F.
Reniers
, E.U. patent N EP3768048A1 (19 July
2019
).
39.
J.
Wei
,
A.
Ostadhossein
,
S.
Li
, and
M.
Ihme
,
Proc. Combust. Inst.
38
,
1433
(
2021
).
40.
P.
Buerger
,
D.
Nurkowski
,
J.
Akroyd
, and
M.
Kraft
,
Proc. Combust. Inst.
36
,
1019
(
2017
).
41.
J.
Voráč
,
P.
Synek
,
V.
Procházka
, and
T.
Hoder
,
J. Phys. D: Appl. Phys.
50
,
294002
(
2017
).
42.
E. H.
Bjarnason
,
B.
Omarsson
,
S.
Engmann
,
F. H.
Omarsson
, and
O.
Ingolfsson
,
Eur. Phys. J. D
68
,
121
(
2014
).
43.
Y.-C.
Kim
,
H.-C.
Lee
,
Y.-S.
Kim
, and
C.-W.
Chung
,
Phys. Plasmas
22
,
083512
(
2015
).
44.
N.
Britun
,
M.
Gaillard
,
A.
Ricard
,
Y. M.
Kim
,
K. S.
Kim
, and
J. G.
Han
,
J. Phys. D: Appl. Phys.
40
,
1022
(
2007
).
45.
A.
Amini
,
M. S.
Zakerhamidi
, and
S.
Khorram
,
Physica B
612
,
412820
(
2021
).
46.
S.
Mathur
and
P.
Kuhn
,
Surf. Coat. Technol.
201
,
807
(
2006
).
47.
D. G.
Piliptsou
,
X. H.
Jiang
,
A. S.
Chaus
,
A. V.
Rogachev
, and
L.
Morovic
,
Diamond Relat. Mater.
135
,
109890
(
2023
).
You do not currently have access to this content.