The correlation between the carrier removal rate (CRR) in n-type Ga2O3 and the nonionizing energy loss (NIEL) by MeV protons during irradiation of rectifier structures is reported. A dependence of CRR = 7 × 10−14 (n0 × NIEL) + 18.7 is found, where n0 is the drift layer doping. The critical proton fluence at which the drift layer doping would be fully compensated by acceptor traps created by the NIEL in Ga2O3 is ΦCR (Ga2O3) = 6 × 10−4 (n0/NIEL) + 5 × 1013 cm−2. A comparison with SiC irradiated under similar conditions shows the Ga2O3 to have a higher critical fluence.
REFERENCES
1.
Kohei
Sasaki
, Appl. Phys. Express
17
, 090101
(2024
). 2.
Florian
Wilhelmi
, Yuji
Komatsu
, Shinya
Yamaguchi
, Yuki
Uchida
, Tadashi
Kase
, Shinji
Kunori
, and Andreas
Lindemann
, IEEE Trans. Power Electron.
38
, 8406
(2023
). 3.
S.
Jahdi
, A. S.
Kumar
, M.
Deakin
, P. C.
Taylor
, and M.
Kuball
, IEEE Open J. Power Electron.
5
, 554
(2024
). 4.
Hao
Chen
et al, Semicond. Sci. Technol.
39
, 063001
(2024
). 5.
John L.
Lyons
, Darshana
Wickramaratne
, and Anderson
Janotti
, Curr. Opin. Solid State Mater. Sci.
30
, 101148
(2024
). 6.
J. M.
Taboada Vasquez
and X.
Li
, “A review of vertical Ga2O3 diodes: From fabrication to performance optimization and future outlooks,” Phys. Status Solidi B
(published online, 2025). 7.
S.
Sun
, C.
Wang
, S.
Alghamdi
, H.
Zhou
, Y.
Hao
, and J.
Zhang
, Adv. Electron. Mater.
11
, 2300844
(2025
). 8.
D.
Kaur
and M.
Kumar
, Adv. Opt. Mater.
9
, 2002160
(2021
). 9.
A. Y.
Polyakov
, E. B.
Yakimov
, I. V.
Shchemerov
, A. A.
Vasilev
, A. I.
Kochkova
, V. I.
Nikolaev
, and S. J.
Pearton
, J. Phys. D: Appl. Phys.
58
, 063002
(2025
). 10.
D. J.
Valdes
et al, Rev. Sci. Instrum.
95
, 083549
(2024
). 11.
S. J.
Pearton
, Xinyi
Xia
, Fan
Ren
, Md Abu
Jafar Rasel
, Sergei
Stepanoff
, Nahid
Al-Mamun
, Aman
Haque
, and Douglas E.
Wolfe
, J. Vac. Sci. Technol. B
41
, 030802
(2023
). 12.
Xinyi
Xia
et al, ECS J. Solid State Sci. Technol.
11
, 095001
(2022
). 13.
E. B.
Yakimov
et al, Appl. Phys. Lett.
118
, 202106
(2021
). 14.
A. Y.
Polyakov
et al, Appl. Phys. Lett.
113
, 092102
(2018
). 15.
A.
Langørgen
, L.
Vines
, and Y.
Kalmann Frodason
, J. Appl. Phys.
135
, 195702
(2024
). 16.
A. Y.
Polyakov
et al, J. Phys. D: Appl. Phys.
53
, 274001
(2020
). 17.
D. A.
Bauman
et al, Acta Astronaut.
180
, 125
(2021
). 18.
Jiancheng
Yang
et al, J. Vac. Sci. Technol. B
36
, 011206
(2018
). 19.
Yahui
Feng
et al, Appl. Phys. Lett.
125
, 182107
(2024
). 20.
Jihyun
Kim
, Stephen J.
Pearton
, Chaker
Fares
, Jiancheng
Yang
, Fan
Ren
, Suhyun
Kim
, and Alexander Y.
Polyakov
, J. Mater. Chem. C
7
, 10
(2019
). 21.
A.
Azarov
et al, Nat. Commun.
14
, 4855
(2023
). 22.
X.
Li
et al, IEEE Trans. Electron Devices
71
, 4549
(2024
). 23.
A. Y.
Polyakov
et al, Appl. Phys. Lett.
112
, 032107
(2018
). 24.
A.
Siddiqui
, S.
Afzal
, and M.
Usman
, J. Comput. Electron.
24
, 17
(2025
). 25.
Alexander Y.
Polyakov
, Vladimir I.
Nikolaev
, Eugene B.
Yakimov
, Fan
Ren
, Stephen J.
Pearton
, and Jihyun
Kim
, J. Vac. Sci. Technol. A
40
, 020804
(2022
). 26.
Esmat
Farzana
, Max F.
Chaiken
, Thomas E.
Blue
, Aaron R.
Arehart
, and Steven A.
Ringel
, APL Mater.
7
, 022502
(2019
). 27.
A. Y.
Polyakov
, N. B.
Smirnov
, I. V.
Shchemerov
, S. J.
Pearton
, F.
Ren
, A. V.
Chernykh
, P. B.
Lagov
, and T. V.
Kulevoy
, APL Mater.
6
, 096102
(2018
). 28.
R. M.
Cadena
et al, IEEE Trans. Nucl. Sci.
70
, 363
(2023
). 29.
Alexander Y.
Polyakov
et al, Sci. Rep.
14
, 27936
(2024
). 30.
Shaozhong
Yue
et al, Appl. Phys. Lett.
124
, 122105
(2024
). 31.
A. Y.
Polyakov
et al, ECS J. Solid State Sci. Technol.
9
, 045003
(2020
). 32.
S.
Yue
, Xuefeng
Zheng
, Yuehua
Hong
, Xiangyu
Zhang
, Fang
Zhang
, Yingzhe
Wang
, Xiaohua
Ma
, and Yue
Hao
, IEEE Trans. Electron Devices
70
, 3026
(2023
); A. Y.
Polyakov
et al, J. Phys. D: Appl. Phys.
56
, 305103
(2023
). 33.
N.
Manikanthababu
, B. R.
Tak
, K.
Prajna
, S.
Sarkar
, K.
Asokan
, D.
Kanjilal
, S. R.
Barman
, R.
Singh
, and B. K.
Panigrahi
, Appl. Phys. Lett.
117
, 142105
(2020
). 34.
Alexander Y.
Polyakov
et al, J. Appl. Phys.
132
, 035701
(2022
). 35.
Takuma
Kobayashi
, Tomoya
Gake
, Yu
Kumagai
, Fumiyasu
Oba
, and Yuichiro
Matsushita
, Appl. Phys. Express
12
, 091001
(2019
). 36.
Esmat
Farzana
, Akhil
Mauze
, Joel B.
Varley
, Thomas E.
Blue
, James S.
Speck
, Aaron R.
Arehart
, and Steven A.
Ringel
, APL Mater.
7
, 121102
(2019
). 37.
D.
Tetelbaum
et al, Mater. Lett.
302
, 130346
(2021
). 38.
A. Y.
Polyakov
et al, APL Mater.
10
, 061102
(2022
). 39.
M. E.
Ingebrigtsen
, A. Yu.
Kuznetsov
, B. G.
Svensson
, G.
Alfieri
, A.
Mihaila
, U.
Badstübner
, A.
Perron
, L.
Vines
, and J. B.
Varley
, APL Mater.
7
, 022510
(2019
). 40.
A. Y.
Polyakov
et al, J. Vac. Sci. Technol. A
41
, 032705
(2023
). 41.
H.
Gao
, S.
Muralidharan
, M. R.
Karim
, S.
White
, L.
Cao
, K.
Leedy
, H.
Zhao
, D.
Look
, and L.
Brillson
, J. Phys. D: Appl. Phys.
53
, 465102
(2020
). 42.
Aamenah
Siddiqui
, Anders
Hallén
, Arshad
Hussain
, and Muhammad
Usman
, Mater. Sci. Semicond. Process.
167
, 107771
(2023
). 43.
S. R.
Messenger
, Edward A.
Burke
, Michael A.
Xapsos
, Geoffrey P.
Summers
, Robert J.
Walters
, Insoo
Jun
, and Thomas
Jordan
, IEEE Trans. Nucl. Sci.
50
, 1919
(2003
). 44.
S. R.
Messenger
, G. P.
Summers
, E. A.
Burke
, R. J.
Walters
, and M. A.
Xapsos
, Prog. Photovoltaics
9
, 103
(2001
). 45.
Kai
Nordlund
et al, J. Nucl. Mater.
512
, 450
(2018
). 46.
V. V.
Kozlovski
, V. V.
Emtsev
, A. M.
Ivanov
, A. A.
Lebedev
, G. A.
Oganesyan
, D. S.
Poloskin
, and N. B.
Stokan
, Physica B
404
, 4752
(2009
). 47.
A. A.
Lebedev
, Radiation Effects in Silicon Carbide
(Materials Science Forum
, Millersville PA
, 2017
).48.
J.-S. Li, H.-H. Wan, C.-C. Chiang, T. J. Yoo, M.-H. Yu, F. Ren, H. Kim, Y.-T. Liao, and S. J. Pearton
, ECS J. Solid State Sci. Technol.
13
, 035003
(2024
). 49.
James F.
Ziegler
, M. D.
Ziegler
, and J. P.
Biersack
, Nucl. Instrum. Methods Phys. Res. Sect. B
268
, 1818
(2010
). 50.
E.
Korhonen
, F.
Tuomisto
, D.
Gogova
, G.
Wagner
, M.
Baldini
, Z.
Galazka
, R.
Schewski
, and M.
Albrecht
, Appl. Phys. Lett.
106
, 242103
(2015
). 51.
Jian-Sian
Li
, Chao-Ching
Chiang
, Hsiao-Hsuan
Wan
, Fan
Ren
, Yu-Te
Liao
, and Stephen J.
Pearton
, J. Vac. Sci. Technol. A
43
, 012701
(2025
). 52.
Ymir K.
Frodason
, Joel B.
Varley
, Klaus Magnus H.
Johansen
, Lasse
Vines
, and Chris G.
Van de Walle
, Phys. Rev. B
107
, 024109
(2023
). 53.
B. R.
Tuttle
, N. J.
Karom
, A.
O’Hara
, R. D.
Schrimpf
, and S. T.
Pantelides
, J. Appl. Phys.
133
, 015703
(2023
). 54.
H. J.
von Bardeleben
, S.
Zhou
, U.
Gerstmann
, D.
Skachkov
, W. R. L.
Lambrecht
, Q. D.
Ho
, and P.
Deák
, APL Mater.
7
, 022521
(2019
). 55.
E.
Wendler
, E.
Treiber
, J.
Baldauf
, S.
Wolf
, and C.
Ronning
, Nucl. Instrum. Methods Phys. Res. Sect. B
379
, 85
(2016
). 56.
Huan
He
, Junlei
Zhao
, Jesper
Byggmästar
, Ru
He
, Kai
Nordlund
, Chaohui
He
, and Flyura
Djurabekova
, Acta Mater.
276
, 120087
(2024
). 57.
Ru
He
, Junlei
Zhao
, Jesper
Byggmästar
, Huan
He
, and Flyura
Djurabekova
, Phys. Rev. Mater.
8
, 084601
(2024
). 58.
M. J.
Boschini
, P. G.
Rancoita
, and M.
Tacconi
, SR-NIEL—7 Calculator: Screened Relativistic (SR) Treatment for Calculating the Displacement Damage and Nuclear Stopping Powers for Electrons, Protons, Light- and Heavy- Ions in Materials (version 10.2); [Online] see INFN sez. Milano-Bicocca, Italy [March, 2025] (2014
), see http://www.sr-niel.org/.59.
P.
Hazdra
, S.
Popelka
, and V.
Zahlava
, Mater. Sci. Forum
821–823
, 785
(2015
). 2025 Published under an exclusive license by the AVS.
2025
Author(s)
You do not currently have access to this content.