Atomistic modeling of thin-film processes provides an avenue not only for discovering key chemical mechanisms of the processes but also to extract quantitative metrics on the events and reactions taking place at the gas-surface interface. Molecular dynamics is a powerful computational method to study the evolution of a process at the atomic scale, but studies of industrially relevant processes usually require suitable force fields, which are, in general, not available for all processes of interest. However, machine-learned force fields (MLFFs) are conquering the field of computational materials and surface science. In this paper, we demonstrate how to efficiently build MLFFs suitable for process simulations and provide two examples for technologically relevant processes: a precursor pulse in the atomic layer deposition of HfO 2 and atomic layer etching of MoS 2.

1.
T. N.
Theis
and
H.-S. P.
Wong
,
Comput. Sci. Eng.
19
,
41
(
2017
).
3.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
4.
R. A.
Ovanesyan
,
E. A.
Filatova
,
S. D.
Elliott
,
D. M.
Hausmann
,
D. C.
Smith
, and
S.
Agarwal
,
J. Vac. Sci. Technol. A
37
,
060904
(
2019
).
5.
T. J.
Kunene
,
L. K.
Tartibu
,
K.
Ukoba
, and
T.-C.
Jen
,
Mater. Today Proc.
62
,
S95
(
2022
).
6.
QuantumATK, version W-2024.09, Synopsys QuantumATK; see: www.synopsys.com/silicon/quantumatk.html.
7.
B.
Kreitz
,
G. S.
Gusmão
,
D.
Nai
,
S. J.
Sahoo
,
A. A.
Peterson
,
D. H.
Bross
,
C. F.
Goldsmith
, and
A. J.
Medford
,
Chem. Soc. Rev.
54
,
560
(
2025
).
8.
S.
Kondati Natarajan
and
S. D.
Elliott
,
Chem. Mater.
30
,
5912
(
2018
).
9.
R.
Mullins
,
S.
Kondati Natarajan
,
S. D.
Elliott
, and
M.
Nolan
,
Chem. Mater.
32
,
3414
(
2020
).
10.
L. P.
de Oliveira
,
D.
Hudebine
,
D.
Guillaume
, and
J. J.
Verstraete
,
Oil Gas Sci. Technol.
71
,
45
(
2016
).
11.
M.
Shirazi
and
S. D.
Elliott
,
J. Comput. Chem.
35
,
244
(
2014
).
12.
G.
Ciccotti
,
C.
Dellago
,
M.
Ferrario
,
E.
Hernández
, and
M.
Tuckerman
,
Eur. Phys. J. B
95
,
3
(
2022
).
13.
T.
Weckman
and
K.
Laasonen
,
Phys. Chem. Chem. Phys.
17
,
17322
(
2015
).
14.
D. G.
Sangiovanni
,
G.
Gueorguiev
, and
A.
Kakanakova-Georgieva
,
Phys. Chem. Chem. Phys.
20
,
17751
(
2018
).
15.
J.
Liu
,
H.
Lu
,
D. W.
Zhang
, and
M.
Nolan
,
Nanoscale
14
,
4712
(
2022
).
16.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. A
13
,
966
(
1995
).
17.
J. R.
Vella
,
D.
Humbird
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
40
,
023205
(
2022
).
18.
H.
Liu
,
Z.
Fu
,
Y.
Li
,
N. F. A.
Sabri
, and
M.
Bauchy
,
J. Non-Cryst. Solids
515
,
133
(
2019
).
19.
20.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Möller
,
Chem. Rev.
121
,
10142
(
2021
).
21.
I.
Batatia
et al., arXiv:2401.00096.
22.
23.
G.
Wang
,
C.
Wang
,
X.
Zhang
,
Z.
Li
,
J.
Zhou
, and
Z.
Sun
,
iScience
27
,
109673
(
2024
).
24.
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
25.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
26.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
27.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
28.
F.
Scarselli
,
M.
Gori
,
A. C.
Tsoi
,
M.
Hagenbuchner
, and
G.
Monfardini
,
IEEE Trans. Neural Netw.
20
,
61
(
2008
).
29.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
30.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
31.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
9
,
3887
(
2018
).
32.
I.
Batatia
,
D. P.
Kovacs
,
G. N. C.
Simm
,
C.
Ortner
, and
G.
Csányi
, arXiv.2206.07697.
33.
S.
Kondati Natarajan
,
T.
Morawietz
, and
J.
Behler
,
Phys. Chem. Chem. Phys.
17
,
8356
(
2015
).
34.
S.
Chmiela
,
V.
Vassilev-Galindo
,
O. T.
Unke
,
A.
Kabylda
,
H. E.
Sauceda
,
A.
Tkatchenko
, and
K.-R.
Müller
,
Sci. Adv.
9
,
eadf0873
(
2023
).
35.
C. J.
Owen
,
S. B.
Torrisi
,
Y.
Xie
,
S.
Batzner
,
K.
Bystrom
,
J.
Coulter
,
A.
Musaelian
,
L.
Sun
, and
B.
Kozinsky
,
npj Comput. Mater.
10
,
92
(
2024
).
36.
S.
Kondati Natarajan
and
J.
Behler
,
Phys. Chem. Chem. Phys.
18
,
28704
(
2016
).
37.
W.
Liu
,
G.
Zhang
,
T.
Hu
,
S.
Shuai
,
C.
Chen
,
S.
Xu
,
W.
Ren
,
J.
Wang
, and
Z.
Ren
,
ACS Appl. Mater. Interfaces
16
,
45754
(
2024
).
38.
J. M.
Marmolejo-Tejada
and
M. A.
Mosquera
,
Chem. Commun.
58
,
6902
(
2022
).
39.
S.
Wieser
and
E.
Zojer
,
npj Comput. Mater.
10
,
18
(
2024
).
40.
M. A.
Caro
,
G.
Csányi
,
T.
Laurila
, and
V. L.
Deringer
,
Phys. Rev. B
102
,
174201
(
2020
).
41.
D.
Zhang
,
P.
Yi
,
X.
Lai
,
L.
Peng
, and
H.
Li
,
Nat. Commun.
15
,
344
(
2024
).
42.
J.
Li
,
K.
Luo
, and
Q.
An
,
Cryst. Growth Des.
24
,
7484
(
2024
).
43.
J.
Chapman
and
R.
Ramprasad
,
J. Phys. Chem. C
124
,
22127
(
2020
).
44.
D.
Hedman
,
B.
McLean
,
C.
Bichara
,
S.
Maruyama
,
J. A.
Larsson
, and
F.
Ding
,
Nat. Commun.
15
,
4076
(
2024
).
45.
L.
Li
,
M.
Agrawal
,
S. Y.
Yeh
,
K. T.
Lam
,
J.
Wu
, and
B.
Magyari-Köpe
,
2022 International Electron Devices Meeting (IEDM)
, San Francisco, CA, 3–7 December 2022 (IEEE, New York, 2022), pp. 15.6.1–15.6.4.
46.
C.
Hong
et al.,
ACS Appl. Mater. Interfaces
16
,
48457
(
2024
).
47.
S.
Smidstrup
et al.,
J. Phys.: Condens. Matter
32
,
015901
(
2020
).
48.
S. K.
Achar
,
J.
Schneider
, and
D. A.
Stewart
,
ACS Appl. Mater. Interfaces
14
,
56963
(
2022
).
49.
J. T.
Frank
,
O. T.
Unke
,
K.-R.
Müller
, and
S.
Chmiela
,
Nat. Commun.
15
,
6539
(
2024
).
50.
F.
Musil
,
A.
Grisafi
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
,
Chem. Rev.
121
,
9759
(
2021
).
51.
M. J.
Van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
,
Comput. Phys. Commun.
226
,
39
(
2018
).
52.
E. V.
Podryabinkin
and
A. V.
Shapeev
,
Comput. Mater. Sci.
140
,
171
(
2017
).
53.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
54.
J.
Schneider
,
J.
Hamaekers
,
S. T.
Chill
,
S.
Smidstrup
,
J.
Bulin
,
R.
Thesen
,
A.
Blom
, and
K.
Stokbro
,
Modell. Simul. Mater. Sci. Eng.
25
,
085007
(
2017
).
55.
E. C.
Neyts
and
A.
Bogaerts
,
Theor. Chem. Acc.
132
,
1320
(
2013
).
56.
M. J.
Mees
,
G.
Pourtois
,
E. C.
Neyts
,
B. J.
Thijsse
, and
A.
Stesmans
,
Phys. Rev. B
85
,
134301
(
2012
).
57.
“ALD database,” (2024); accessed November 11, 2024; see: https://doi.org/10.6100/alddatabase.
58.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
59.
L.
Nyns
,
A.
Delabie
,
M.
Caymax
,
M. M.
Heyns
,
S.
Van Elshocht
,
C.
Vinckier
, and
S.
De Gendt
,
ECS Trans.
16
,
257
(
2008
).
60.
“ALE database,” (2024); accessed November 11, 2024; see: https://doi.org/10.6100/aledatabase.
61.
K. S.
Kim
et al.,
ACS Appl. Mater. Interfaces
9
,
11967
(
2017
).
62.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
You do not currently have access to this content.