The electrical properties and deep trap spectra of semi-insulating Ga2O3(Fe) implanted with Si ions and subsequently annealed at 1000 °C were investigated. A significant discrepancy was observed between the measured shallow donor concentration profile and the profile predicted by Stopping Power and Range of Ions in Matter simulations, indicating substantial compensation. Deep level transient spectroscopy revealed the presence of deep acceptors at Ec −0.5 eV with a concentration of ∼10¹⁷ cm³, insufficient to fully account for the observed compensation. Photocapacitance spectroscopy identified additional deep acceptors with optical ionization thresholds near 2 and 2.8–3.1 eV, tentatively attributed to gallium vacancy-related defects. However, the combined concentration of these deep acceptors still fell short of explaining the observed donor deactivation, suggesting the formation of electrically neutral Si-vacancy complexes. Furthermore, the properties of Ga2O3 (Fe) implanted with Si and subjected to hydrogen plasma treatment at 330 °C were also examined. This material exhibited high resistivity with the Fermi level pinned near Ec –0.3 eV, similar to common radiation defects in proton-implanted Ga2O3. A prominent deep center near Ec −0.6 eV, consistent with the known E1 electron trap attributed to Si-H complexes, was also observed. These results highlight the challenges associated with Si implantation and activation in Ga2O3 and suggest that hydrogen plasma treatment, while effective for Ga-implanted Ga2O3 is less suitable for Si-implanted material due to the formation of compensating Si-H complexes.

1.
Gallium Oxide: Materials Properties, Crystal Growth, and Devices
, Springer Series in Materials Science, edited by
M.
Higashiwaki
and
S.
Fujita
(
Springer
,
New York
,
2020
), ISBN 978-3-030-37152-4 and ISBN 978-3-030-37153-1.
2.
Kohei
Sasaki
,
Appl. Phys. Express
17
,
090101
(
2024
).
3.
Hao
Chen
et al,
Semicond. Sci. Technol.
39
,
063001
(
2024
).
4.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Express
6
,
086502
(
2013
).
5.
M. H.
Wong
,
Y.
Nakata
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Express
10
,
041101
(
2017
).
6.
Katie R.
Gann
et al,
J. Appl. Phys.
135
,
015302
(
2024
).
7.
Ribhu
Sharma
,
Mark E.
Law
,
Chaker
Fares
,
Marko
Tadjer
,
Fan
Ren
,
A.
Kuramata
, and
S. J.
Pearton
,
AIP Adv.
9
,
085111
(
2019
).
8.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
40
,
431
(
2019
).
9.
Arka
Sardar
,
Tamara
Isaacs-Smith
,
Jacob
Lawson
,
Thaddeus
Asel
,
Ryan B.
Comes
,
Joseph N.
Merrett
, and
Sarit
Dhar
,
Appl. Phys. Lett.
121
,
262101
(
2022
).
10.
Ray-Hua
Horng
,
Apoorva
Sood
,
Siddharth
Rana
,
Niall
Tumilty
,
Fu-Gow
Tarntair
,
Catherine
Langpoklakpam
,
Hao-Chung
Kuo
, and
Jitendra Pratap
Singh
,
Mater. Today Adv.
18
,
100382
(
2023
).
11.
Joseph A.
Spencer
et al,
Appl. Phys. Lett.
121
,
192102
(
2022
).
12.
A.
Azarov
,
V.
Venkatachalapathy
,
L.
Vines
,
E.
Monakhov
,
I. H.
Lee
, and
A.
Kuznetsov
,
Appl. Phys. Lett.
119
,
070045
(
2021
).
13.
S. B.
Kjeldby
,
A.
Azarov
,
P. D.
Nguyen
,
V.
Venkatachalapathy
,
R.
Mikšová
,
A.
Macková
,
A.
Kuznetsov
,
Ø
Prytz
, and
L.
Vines
,
J. Appl. Phys.
131
,
125701
(
2022
).
14.
S. K.
Swain
,
M. H.
Weber
,
J.
Jesenovec
,
M.
Saleh
,
K. G.
Lynn
, and
J. S.
McCloy
,
Phys. Rev. Appl.
15
,
054010
(
2021
).
15.
Y. K.
Frodason
,
J. B.
Varley
,
K. M. H.
Johansen
,
L.
Vines
, and
C. G.
Van De Walle
,
Phys. Rev. B
107
,
024109
(
2023
).
16.
M. H.
Wong
,
C.-H.
Lin
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
113
,
102103
(
2018
).
17.
C.-H.
Lin
et al,
IEEE Electron Device Lett.
40
,
1487
(
2019
).
18.
M. H.
Wong
,
K.
Goto
,
Y.
Morikawa
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
,
Appl. Phys. Express
11
,
064102
(
2018
).
19.
Manuel
Fregolent
,
Carlo
De Santi
,
Matteo
Buffolo
,
Masataka
Higashiwaki
,
Gaudenzio
Meneghesso
,
Enrico
Zanoni
, and
Matteo
Meneghini
,
J. Appl. Phys.
130
,
245704
(
2021
).
20.
A.
Nikolskaya
et al,
J. Vac. Sci. Technol. A
39
,
030802
(
2021
).
21.
Rie
Togashi
et al,
Jpn. J. Appl. Phys.
54
,
041102
(
2015
).
22.
E. A.
Anber
,
D.
Foley
,
A. C.
Lang
,
J.
Nathaniel
,
J. L.
Hart
,
M. J.
Tadjer
,
K. D.
Hobart
,
S.
Pearton
, and
M. L.
Taheri
,
Appl. Phys. Lett.
117
,
152101
(
2020
).
23.
J.
García-Fernández
et al,
Mater. Adv.
5
,
3824
(
2024
).
24.
A.
Azarov
,
C.
Bazioti
,
Vishnukanthan
Venkatachalapathy
,
Ponniah
Vajeeston
,
Edouard
Monakhov
, and
Andrej
Kuznetsov
,
Phys. Rev. Lett.
128
,
015704
(
2022
).
25.
J.
García-Fernández
,
S. B.
Kjeldby
,
P. D.
Nguyen
,
O. B.
Karlsen
,
L.
Vines
, and
O.
Prytz
,
Appl. Phys. Lett.
121
,
191601
(
2022
).
26.
Alexander
Petkov
,
David
Cherns
,
Wei-Ying
Chen
,
Junliang
Liu
,
John
Blevins
,
Vincent
Gambin
,
Meimei
Li
,
Dong
Liu
, and
Martin
Kuball
,
Appl. Phys. Lett.
121
,
171903
(
2022
).
27.
Qiu-Shi
Huang
,
Chuan-Nan
Li
,
Mao-Sheng
Hao
,
Han-Pu
Liang
,
Xuefen
Cai
,
Ying
Yue
,
Andrej
Kuznetsov
,
Xie
Zhang
, and
Su-Huai
Wei
,
Phys. Rev. Lett.
133
,
226101
(
2024
).
28.
Hsien-Lien
Huang
,
Christopher
Chae
,
Jared M.
Johnson
,
Alexander
Senckowski
,
Shivam
Sharma
,
Uttam
Singisetti
,
Man Hoi
Wong
, and
Jinwoo
Hwang
,
APL Mater.
11
,
061113
(
2023
).
30.
Ru
He
,
Junlei
Zhao
,
Jesper
Byggmastar
,
Huan
He
, and
Flyura
Djurabekova
,
Phys. Rev. Mater.
8
,
084601
(
2024
).
31.
A. Y.
Polyakov
et al,
J. Appl. Phys.
133
,
095701
(
2023
).
32.
Alexander Y.
Polyakov
et al,
Crystals
13
,
1400
(
2023
).
33.
Alexander Y.
Polyakov
et al,
J. Mater. Chem. C
12
,
1020
(
2024
).
34.
Alena
Nikolskaya
et al,
Appl. Phys. Lett.
123
,
211901
(
2023
).
36.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
37.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
P. B.
Lagov
, and
T. V.
Kulevoy
,
APL Mater.
6
,
096102
(
2018
).
38.
A. Y.
Polyakov
,
In-Hwan
Lee
,
A.
Miakonkikh
,
A. V.
Chernykh
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
A. I.
Kochkova
,
A. A.
Vasilev
, and
S. J.
Pearton
,
J. Appl. Phys.
127
,
175702
(
2020
).
39.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley-Interscience
,
New York
,
2006
).
40.
Capacitance Spectroscopy of Semiconductors
, edited by
J. V.
Li
and
G.
Ferrari
(
Pan Stanford Publishing Pte. Ltd
,
Singapore
,
2018
), p.
437
.
41.
M.
Tapiero
,
N.
Benjelloun
,
J. P.
Zielinger
,
S.
El Hamd
, and
C.
Noguet
,
J. Appl. Phys.
64
,
4006
(
1988
).
42.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
Fan
Ren
,
A. V.
Chernykh
, and
A. I.
Kochkova
,
Appl. Phys. Lett.
113
,
142102
(
2018
).
43.
Alexander Y.
Polyakov
,
Nikolai B.
Smirnov
,
In-Hwan
Lee
, and
Stephen J.
Pearton
,
J. Vac. Sci. Technol. B
33
,
061203
(
2015
).
44.
C. A.
Dawe
,
V. P.
Markevich
,
M. P.
Halsall
,
I. D.
Hawkins
,
A. R.
Peaker
,
A.
Nandi
,
I.
Sanyal
, and
M.
Kuball
,
J. Appl. Phys.
136
,
045705
(
2024
).
45.
Amanda
Langørgen
,
Lasse
Vines
, and
Ymir Kalmann
Frodason
,
J. Appl. Phys.
135
,
195702
(
2024
).
46.
A. Y.
Polyakov
,
A. I.
Kochkova
,
A.
Langørgen
,
L.
Vines
,
A.
Vasilev
,
I. V.
Shchemerov
,
A. A.
Romanov
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. A
41
,
023401
(
2023
).
47.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
108
,
052105
(
2016
).
48.
M. E.
Ingebrigtsen
,
A. Yu.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
,
APL Mater.
7
,
022510
(
2019
).
49.
Alexander Y.
Polyakov
,
Vladimir I.
Nikolaev
,
Eugene B.
Yakimov
,
Fan
Ren
,
Stephen J.
Pearton
, and
Jihyun
Kim
,
J. Vac. Sci. Technol. A
40
,
020804
(
2022
).
50.
A.
Karjalainen
,
P. M.
Weiser
,
I.
Makkonen
,
V. M.
Reinertsen
,
L.
Vines
, and
F.
Tuomisto
,
J. Appl. Phys.
129
,
165702
(
2021
).
51.
A. Y.
Polyakov
et al,
Appl. Phys. Lett.
113
,
092102
(
2018
).
52.
Y. H.
Li
et al,
Phys. Rev. B
110
,
174106
(
2024
).
53.
A. Y.
Polyakov
et al,
J. Phys. D: Appl. Phys.
53
,
274001
(
2020
).
54.
Md Minhazul
Islam
,
Maciej Oskar
Liedke
,
David
Winarski
,
Maik
Butterling
,
Andreas
Wagner
,
Peter
Hosemann
,
Yongqiang
Wang
,
Blas
Uberuaga
, and
Farida A.
Selim
,
Sci. Rep.
10
,
6134
(
2020
).
You do not currently have access to this content.