Chromium nitride (CrN), with its near room-temperature antiferromagnetic transition, is regarded as a promising candidate for next-generation spintronic devices. While epitaxial CrN films have been successfully synthesized via pulsed laser deposition, growing high-quality CrN films using magnetron sputtering (a widely applied technique for large-scale fabrication) remains a big challenge. In this work, we develop a method to synthesize high-quality epitaxial CrN films by a homemade 90° and 40° off-axis magnetron sputtering epitaxy. The residual resistivity ratio of these CrN films is around 3.28, one of the highest values in reports. Moreover, the effects of different sputtering setups (90° and 40° off-axis) on the physical properties of the CrN films were systematically investigated. It is shown that both CrN films have high crystallinity, superior conductivity (σ ∼ 6200 S/cm), and robust near room-temperature (TN ∼ 270 K) Néel transitions. Compared to the CrN films grown by the 40° off-axis sputtering, the CrN films synthesized by the 90° off-axis sputtering have higher Néel temperatures (276 K) and carrier mobility (77 cm2 V−1 s−1). Our work provides a way to synthesize high-quality CrN films by magnetron sputtering epitaxy and uncovers the effects of the off-axis sputtering geometry on the physical properties of films.

1.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
,
Rev. Mod. Phys.
90
,
015005
(
2018
).
2.
A.
Hoffmann
and
W.
Zhang
,
J. Magn. Magn. Mater.
553
,
169216
(
2022
).
3.
S. M.
Wu
,
W.
Zhang
,
A.
KC
,
P.
Borisov
,
J. E.
Pearson
,
J. S.
Jiang
,
D.
Lederman
,
A.
Hoffmann
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
116
,
097204
(
2016
).
5.
R.
Lebrun
,
A.
Ross
,
S.
Bender
,
A.
Qaiumzadeh
,
L.
Baldrati
,
J.
Cramer
,
A.
Brataas
,
R.
Duine
, and
M.
Kläui
,
Nature
561
,
222
(
2018
).
7.
8.
R.
Morales
,
Z.-P.
Li
,
J.
Olamit
,
K.
Liu
,
J.
Alameda
, and
I. K.
Schuller
,
Phys. Rev. Lett.
102
,
097201
(
2009
).
9.
M.
Lou
,
R.
Chen
,
K.
Xu
,
J.
Pu
, and
K.
Chang
,
Mater. Horiz.
11
,
4359
(
2024
).
10.
R.-Z.
Li
,
C.-Q.
Cheng
,
J.-B.
Pu
,
X.-H.
Min
,
T.-S.
Cao
, and
J.
Zhao
,
Corros. Sci.
240
,
112448
(
2024
).
11.
L.
Gao
,
L.
Qin
,
B.
Wang
,
M.
Bao
,
Y.
Cao
,
X.
Duan
,
W.
Yang
,
X.
Yang
, and
Q.
Shi
,
Small
20
,
2308818
(
2024
).
12.
S. P.
Mani
,
P.
Agilan
,
M.
Kalaiarasan
,
K.
Ravichandran
,
N.
Rajendran
, and
Y.
Meng
,
J. Mater. Sci. Technol.
97
,
134
(
2022
).
13.
Z.
Li
,
Y.
Wang
,
X.
Cheng
,
Z.
Zeng
,
J.
Li
,
X.
Lu
,
L.
Wang
, and
Q.
Xue
,
ACS Appl. Mater. Interfaces
10
,
2965
(
2018
).
14.
C. X.
Quintela
et al,
Adv. Mater.
27
,
3032
(
2015
).
15.
M.
Yuan
,
X.
Wan
,
Q.
Meng
,
X.
Lu
,
L.
Sun
,
W.
Wang
,
P.
Jiang
, and
X.
Bao
,
Mater. Today Phys.
19
,
100420
(
2021
).
16.
C. X.
Quintela
,
F.
Rivadulla
, and
J.
Rivas
,
Appl. Phys. Lett.
94
,
152103
(
2009
).
18.
19.
P. A.
Bhobe
et al,
Phys. Rev. Lett.
104
,
236404
(
2010
).
20.
B.
Alling
,
T.
Marten
, and
I.
Abrikosov
,
Phys. Rev. B
82
,
184430
(
2010
).
21.
22.
K.
Alam
,
R.
Ponce-Pérez
,
K.
Sun
,
A.
Foley
,
N.
Takeuchi
, and
A. R.
Smith
,
J. Vac. Sci. Technol. A
39
,
063209
(
2021
).
23.
J.
Xue
et al,
J. Appl. Phys.
134
,
143904
(
2023
).
24.
25.
26.
A. S.
Botana
,
F.
Tran
,
V.
Pardo
,
D.
Baldomir
, and
P.
Blaha
,
Phys. Rev. B
85
,
235118
(
2012
).
27.
X. Y.
Zhang
,
J. S.
Chawla
,
B. M.
Howe
, and
D.
Gall
,
Phys. Rev. B
83
,
165205
(
2011
).
28.
K.
Inumaru
,
K.
Koyama
,
N.
Imo-Oka
, and
S.
Yamanaka
,
Phys. Rev. B
75
,
054416
(
2007
).
29.
S.
Kalal
,
S.
Nayak
,
S.
Sahoo
,
R.
Joshi
,
R. J.
Choudhary
,
R.
Rawat
, and
M.
Gupta
,
Sci. Rep.
13
,
15994
(
2023
).
30.
X. Y.
Zhang
,
J. S.
Chawla
,
R. P.
Deng
, and
D.
Gall
,
Phys. Rev. B
84
,
073101
(
2011
).
31.
X. F.
Duan
,
W. B.
Mi
,
Z. B.
Guo
, and
H. L.
Bai
,
J. Appl. Phys.
113
,
023701
(
2013
).
32.
Q.
Jin
et al,
Adv. Mater.
33
,
2005920
(
2021
).
33.
Q.
Jin
et al,
Appl. Phys. Lett.
120
,
073103
(
2022
).
34.
K.
Alam
,
R.
Ponce-Pérez
,
K.
Sun
,
A.
Foley
,
N.
Takeuchi
, and
A. R.
Smith
,
J. Vac. Sci. Technol. A
41
,
053411
(
2023
).
35.
D.
Gall
,
C.-S.
Shin
,
R. T.
Haasch
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
91
,
5882
(
2002
).
37.
M. K.
Jayaraj
,
A.
Antony
, and
M.
Ramachandran
,
Bull. Mater. Sci.
25
,
227
(
2002
).
38.
H.
Zhu
,
H.
Ma
, and
Y.
Zhao
,
Vacuum
157
,
428
(
2018
).
39.
A. C.
Westerheim
,
L. S.
Yu-Jahnes
, and
A. C.
Anderson
,
IEEE Trans. Magn.
27
,
1001
(
1991
).
40.
S.
Zhu
,
C.-H.
Su
,
S. L.
Lehoczky
,
P.
Peters
, and
M. A.
George
,
J. Cryst. Growth
211
,
106
(
2000
).
41.
L. M.
Wang
,
H. W.
Yu
,
H. C.
Yang
, and
H. E.
Horng
,
Phys. C
256
,
57
(
1996
).
42.
J. P.
Podkaminer
et al,
Appl. Phys. Lett.
103
,
071604
(
2013
).
43.
M.
Kon
,
P. K.
Song
,
A.
Mitsui
, and
Y.
Shigesato
,
Jpn. J. Appl. Phys.
41
,
6174
(
2002
).
44.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
38
,
060805
(
2020
).
45.
K.
Sarakinos
,
J.
Alami
, and
S.
Konstantinidis
,
Surf. Coat. Technol.
204
,
1661
(
2010
).
46.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
30
,
030801
(
2012
).
47.
J.
Alami
,
S.
Bolz
, and
K.
Sarakinos
,
J. Alloys Compd.
483
,
530
(
2009
).
49.
50.
D. M.
Mattox
,
Handbook of Physical Vapor Deposition (PVD) Processing
(
Elsevier
,
Kidlington
,
2010
).
51.
G.
Vignaud
and
A.
Gibaud
,
J. Appl. Crystallogr.
52
,
201
(
2019
).
52.
R.
Zhai
,
J.
Bi
,
S.
Zheng
,
W.
Chen
,
Y.
Lin
,
S.
Xiao
, and
Y.
Cao
,
Discover Nano
19
,
42
(
2024
).
53.
Y. H.
Liu
,
K.
Wang
,
W.
Lin
,
A.
Chinchore
,
M.
Shi
,
J.
Pak
,
A. R.
Smith
, and
C.
Constantin
,
Thin Solid Films
520
,
90
(
2011
).
54.
M. J.
Jung
,
K. H.
Nam
,
Y. M.
Jung
, and
J. G.
Han
,
Surf. Coat. Technol.
171
,
59
(
2003
).
55.
B.
Abdallah
,
M.
Kakhia
,
W.
Alssadat
, and
W.
Zetoun
,
Prot. Met. Phys. Chem. Surf.
57
,
80
(
2021
).
56.
M. A.
Gharavi
et al,
J. Phys. D: Appl. Phys.
51
,
355302
(
2018
).
57.
58.
J. R.
Frederick
and
D.
Gall
,
J. Appl. Phys.
98
,
054906
(
2005
).
59.
G.
Greczynski
,
D.
Primetzhofer
,
J.
Lu
, and
L.
Hultman
,
Appl. Surf. Sci.
396
,
347
(
2017
).
60.
I.
Milošev
,
H.-H.
Strehblow
,
B.
Navinšek
, and
P.
Panjan
,
Surf. Sci. Spectra
5
,
138
(
1998
).
61.
D.
Mandrino
and
B.
Podgornik
,
Appl. Surf. Sci.
396
,
554
(
2017
).
62.
C.
Emery
,
A. R.
Chourasia
, and
P.
Yashar
,
J. Electron Spectrosc. Relat. Phenom.
104
,
91
(
1999
).
63.
X.
Tang
,
R.
Wei
,
L.
Hu
,
J.
Yang
,
W.
Song
,
J.
Dai
,
X.
Zhu
, and
Y.
Sun
,
Cryst. Growth Des.
19
,
5737
(
2019
).
64.
C. X.
Quintela
,
F.
Rivadulla
, and
J.
Rivas
,
Phys. Rev. B
82
,
245201
(
2010
).
65.
C. X.
Quintela
,
B.
Rodríguez-González
, and
F.
Rivadulla
,
Appl. Phys. Lett.
104
,
022103
(
2014
).
66.
S.
Wang
,
X.
Yu
,
J.
Zhang
,
L.
Wang
,
K.
Leinenweber
,
D.
He
, and
Y.
Zhao
,
Cryst. Growth Des.
16
,
351
(
2016
).
67.
S.
Sawaya
,
K. A.
Bin Onn
, and
T.
Suzuki
,
Jpn. J. Appl. Phys.
63
,
01SP41
(
2024
).
68.
M. E.
McGahay
,
S. V.
Khare
, and
D.
Gall
,
Phys. Rev. B
102
,
235102
(
2020
).
You do not currently have access to this content.