This study compares the quality of aluminum nitride (AlN) thin films deposited on Si substrates using 350 kHz pulsed DC and 13.56 MHz RF reactive sputtering techniques under identical process conditions with varied source power. Our focus was on evaluating the differences in film properties such as crystallinity, surface morphology, and thickness uniformity. Our results indicated that, although scanning electron microscopy cross-sectional images showed a lower deposition rate for RF sputtering, the produced films exhibited better crystallinity, as evidenced by sharper and more intense XRD peaks, particularly the ⟨002⟩ peak. Calculations derived from XRD spectra of c axis oriented AlN thin films, utilizing RF source power at 700 W, revealed that the optimal c axis lattice constant is 4.8706 Å, and the texture coefficient in the ⟨002⟩ (TC002) direction is 1.99. Both values surpass those obtained at the same power level in pulse DC power source. Additionally, atomic force microscopy measurements indicate that the surface roughness of films deposited by both pulsed DC and RF sputtering slightly increased with the sputtering power. In the in situ optical emission spectroscopy (OES) plasma spectrum, the higher spectral intensities observed in RF sputtering, particularly the emission characteristic of ionized nitrogen (N2+) at around 390.93 nm, suggest that RF plasma provides energy conditions conducive to the formation of high-quality AlN films. Additionally, we applied the principal component analysis algorithm for big data analysis to reduce dimensionality and visualize the clustering results of OES data recorded during the deposition of thin films using two different power sources. It is evident from the analysis that there are distinct clustering effects for both power sources, and thus, substantiating the presence of diverse characteristics between the two sources is essential.

1.
A. F.
Wright
and
J. S.
Nelson
,
Phys. Rev. B
51
,
7866
(
1995
).
2.
E.
Ruiz
,
S.
Alvarez
, and
P.
Alemany
,
Phys. Rev. B
49
,
7115
(
1994
).
3.
S.
Strite
and
H.
Morkoç
,
J. Vac. Sci. Technol. B
10
,
1237
(
1992
).
4.
X.
Peng
,
Y.
Zhang
,
S.
Zhang
,
H.
Zhou
, and
X.
Liu
,
J. Semicond.
43
,
022801
(
2022
).
5.
G.
Bu
,
D.
Ciplys
,
M.
Shur
,
L. J.
Schowalter
,
S.
Schujman
, and
R.
Gaska
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
251
(
2006
).
6.
K.
Tsubouchi
and
N.
Mikoshiba
,
IEEE Trans. Sonics Ultrason.
32
,
634
(
1985
).
7.
T.
Suetsugu
,
T.
Yamazaki
,
S.
Tomabechi
,
K.
Wada
,
K.
Masu
, and
K.
Tsubouchi
,
Appl. Surf. Sci.
117
,
540
(
1997
).
8.
L.
García-Gancedo
,
A. J.
Flewitt
,
G. M.
Ashley
,
J.
Keddie
, and
W. I.
Milne
,
Sens. Actuators B Chem.
160
,
1386
(
2011
).
9.
K.-H.
Chiu
,
J.-H.
Chen
,
H.-R.
Chen
, and
R.-S.
Huang
,
Thin Solid Films
515
,
4819
(
2007
).
10.
D.
Gahan
,
J. R.
Sheridan
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
21
,
024004
(
2012
).
11.
H.
Cheng
,
Y.
Sun
, and
P.
Hing
,
Thin Solid Films
434
,
112
(
2003
).
12.
A.
Baptista
,
F.
Silva
,
J.
Porteiro
,
J.
Míguez
, and
G.
Pinto
,
Coatings
8
,
402
(
2018
).
13.
B.
Zheng
,
Y.
Fu
,
K.
Wang
,
T.
Schuelke
, and
Q. H.
Fan
,
Plasma Sources Sci. Technol.
30
,
035019
(
2021
).
14.
J.
Sellers
,
Surf. Coat. Technol.
98
,
1245
(
1998
).
15.
J.
Bradley
,
H.
Bäcker
,
Y.
Aranda-Gonzalvo
,
P.
Kelly
, and
R.
Arnell
,
Plasma Sources Sci. Technol.
11
,
165
(
2002
).
16.
H. C.
Barshilia
and
K.
Rajam
,
Surf. Coat. Technol.
201
,
1827
(
2006
).
17.
P. N.
Soltanpour
,
J. B.
Jones
, Jr.
, and
S. M.
Workman
, “
Optical emission spectrometry
,” in
Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties
, edited by
A. L.
Page
(
ASA
,
Madison
,
1982
), pp.
29
65
.
18.
A.
Qayyum
,
S.
Zeb
,
M.
Naveed
,
S.
Ghauri
,
A.
Waheed
, and
M.
Zakaullah
,
Plasma Devices Oper.
14
,
61
(
2006
).
19.
S. J.
Hong
,
G. S.
May
, and
D.-C.
Park
,
IEEE Trans. Semicond. Manuf.
16
,
598
(
2003
).
20.
W.-Y.
Zhou
,
W.-Z.
Zhang
,
L.-S.
Wang
, and
H. J.
Zhang
,
Materials
16
,
3015
(
2023
).
21.
L. H.
Kau
,
H. J.
Huang
,
H. E.
Chang
,
Y. L.
Hsieh
,
Y. K.
Fuh
, and
T. T.
Li
,
Micro Nano Lett.
15
,
323
(
2020
).
22.
W.-L.
Chen
,
C.-Y.
Lin
,
J.-M.
Huang
, and
T.-C.
Chen
,
Int. J. Adv. Manuf. Technol.
127
,
2955
(
2023
).
23.
H.-F.
Chen
,
T.-C.
Lin
, and
W.-C.
Chen
,
Mater. Chem. Phys.
295
,
127070
(
2023
).
24.
H.-E.
Cheng
,
T.-C.
Lin
, and
W.-C.
Chen
,
Thin Solid Films
425
,
85
(
2003
).
25.
A.
Ababneh
,
U.
Schmid
,
J.
Hernando
,
J.
Sánchez-Rojas
, and
H.
Seidel
,
Mater. Sci. Eng. B
172
,
253
(
2010
).
26.
T.-Y.
Lu
,
C.-L.
Hsu
, and
H.-C.
Lee
,
Int. J. Adv. Manuf. Technol.
114
,
1975
(
2021
).
27.
J.
Zhang
,
Y.
Zheng
,
Y.
Sun
,
Y.
Yuan
, and
S.
Li
,
Surf. Coat. Technol.
198
,
68
(
2005
).
28.
H.
Kao
,
P.
Shih
, and
C.-H.
Lai
,
Jpn. J. Appl. Phys.
38
,
1526
(
1999
).
29.
X.-H.
Xu
,
H.-S.
Wu
,
C.-J.
Zhang
, and
Z.-H.
Jin
,
Thin Solid Films
388
,
62
(
2001
).
30.
M. V.
Pelegrini
and
I.
Pereyra
,
Phys. Status Solidi C
7
,
840
(
2010
).
31.
W.
Yim
and
R.
Paff
,
J. Appl. Phys.
45
,
1456
(
1974
).
32.
J.
Epp
, “
X-ray diffraction (XRD) techniques for materials characterization
,” in
Materials Characterization Using Nondestructive Evaluation (NDE) Methods
, edited by
A.
Öchsner
(
Elsevier
,
Amsterdam
,
2016
), pp.
81
124
.
33.
A. K.
Zak
,
W. A.
Majid
,
M. E.
Abrishami
, and
R.
Yousefi
,
Solid State Sci.
13
,
251
(
2011
).
34.
H.-C.
Lee
,
J.-Y.
Lee
, and
H.-J.
Ahn
,
Thin Solid Films
251
,
136
(
1994
).
35.
H.
Cheng
,
Y.
Sun
,
J.
Zhang
,
Y.
Zhang
,
S.
Yuan
, and
P.
Hing
,
J. Cryst. Growth
254
,
46
(
2003
).
36.
A. E.
Giba
,
P.
Pigeat
,
S.
Bruyère
,
T.
Easwarakhanthan
,
F.
Mücklich
, and
D.
Horwat
,
Thin Solid Films
636
,
537
(
2017
).
37.
L.
Alexander
and
H. P.
Klug
,
J. Appl. Phys.
21
,
137
(
1950
).
38.
C.
Zuo
,
N.
Sinha
,
J.
Van der Spiegel
, and
G.
Piazza
,
J. Microelectromech. Syst.
19
,
570
(
2010
).
39.
M.
Pătru
,
L.
Dumitrescu
,
S.
Butoi
,
G.
Florea
, and
F.
Gruia
,
Appl. Surf. Sci.
354
,
267
(
2015
).
40.
W.
Gu
,
J.
Yao
,
J.
Huang
, and
M.
Sun
,
J. Semicond.
41
,
122802
(
2020
).
41.
A.
Qayyum
,
S.
Zeb
,
S.
Ali
,
A.
Waheed
, and
M.
Zakaullah
,
Plasma Chem. Plasma Process.
25
,
551
(
2005
).
You do not currently have access to this content.