Boron-doped diamond (BDD) films are essential for the fabrication of electronic devices with P+ or P layers. However, the boron atoms in the intrinsic diamond substrates due to the concentration gradient may affect the height of the Schottky barrier based on these BDD films. BDD films with different concentrations of boron atoms were deposited on chemical vapor deposition (CVD) diamond seeds by microwave plasma chemical vapor deposition. Laser confocal Raman spectroscopy was utilized to investigate the migration of boron atoms during the CVD deposition process. The results indicate that the diffusion depth is below 20 μm with a boron atom concentration of 1020 cm−3 at a deposition time of 10 h. The boron atom diffusion depth is below 8 μm at a fixed CH4/H2 ratio of 2% after 5 h deposition. The characteristic peak of boron atoms is not detected by Raman spectroscopy after 3 h deposition, while the infrared spectrum indicates that the boron atom concentration is more than 1018 cm−3. Consequently, the boron atom concentration and the diffusion depth in CVD seeds can be regulated by controlling the CH4/H2 ratio and the deposition time. Planar diamond-based Schottky diodes based on the prepared P+ or P layer exhibit distinct rectification characteristics.

1.
T.
Hanada
,
S.
Ohmagari
,
J. H.
Kaneko
, and
H.
Umezawa
,
Appl. Phys. Lett.
117
,
262107
(
2020
).
2.
J.
Liu
,
T.
Teraji
,
B.
Da
, and
Y.
Koide
,
IEEE Trans. Electron Devices
68
,
3963
(
2021
).
3.
Z.
Liu
,
F.
Lin
,
D.
Zhao
,
T.
Min
, and
H.
Wang
,
Phys. Status Solidi A
217
,
2000207
(
2020
).
4.
D.
Das
,
A.
Kandasami
, and
M. S.
Ramachandra Rao
,
Appl. Phys. Lett.
118
,
102102
(
2021
).
5.
Z.
Han
and
C.
Bayram
,
IEEE Electron Device Lett.
44
,
1692
(
2023
).
6.
T.
Iwao
,
P.
Sittimart
,
T.
Yoshitake
,
H.
Umezawa
, and
S.
Ohmagari
,
Phys. Status Solidi A
219
,
2100846
(
2022
).
7.
J.
Tsunoda
,
N.
Niikura
,
K.
Ota
,
A.
Morishita
,
A.
Hiraiwa
, and
H.
Kawarada
,
IEEE Electron Device Lett.
43
,
88
(
2022
).
8.
J.
Tsunoda
,
M.
Iwataki
,
N.
Oi
,
A.
Morishita
,
A.
Hiraiwa
, and
H.
Kawarada
,
Carbon
176
,
349
(
2021
).
9.
Z.
Liu
,
S.
Baluchová
,
A. F.
Sartori
,
Z.
Li
,
Y.
Gonzalez-Garcia
,
M.
Schreck
, and
J. G.
Buijnsters
,
Carbon
201
,
1229
(
2023
).
10.
P.
Hazdra
et al,
Diamond Relat. Mater.
126
,
109088
(
2022
).
11.
D.
Zhao
,
C.
Hu
,
Z.
Liu
,
H.-X.
Wang
,
W.
Wang
, and
J.
Zhang
,
Diamond Relat. Mater.
73
,
15
(
2017
).
12.
N.
Akashi
,
N.
Fujimaki
, and
S.
Shikata
,
Diamond Relat. Mater.
109
,
108024
(
2020
).
13.
N.
Mikata
,
M.
Takeuchi
,
N.
Ohtani
,
K.
Ichikawa
,
T.
Teraji
, and
S.
Shikata
,
Diamond Relat. Mater.
127
,
109188
(
2022
).
14.
K.
Li
,
X.
Kang
, and
L.
Gou
,
Surf. Coat. Technol.
427
,
127780
(
2021
).
15.
Z.
Wang
,
Y.
Liu
,
H.
Zhao
,
B.
Li
,
Q.
Guo
,
H.
Ma
, and
X.
Jia
,
Int. J. Refract. Met. Hard Mater.
117
,
106404
(
2023
).
16.
R.
Rouzbahani
,
S. S.
Nicley
,
D. E. P.
Vanpoucke
,
F.
Lloret
,
P.
Pobedinskas
,
D.
Araujo
, and
K.
Haenen
,
Carbon
172
,
463
(
2021
).
17.
C.
Wild
,
R.
Kohl
,
N.
Herres
,
W.
Müller-Sebert
, and
P.
Koidl
,
Diamond Relat. Mater.
3
,
373
(
1994
).
18.
T. H.
Stuchliková
,
Z.
Remes
,
V.
Mortet
,
A.
Taylor
,
P.
Ashcheulov
,
J.
Stuchlik
, and
V. A.
Volodin
,
Vacuum
168
,
108813
(
2019
).
19.
B. N.
Mavrin
,
V. N.
Denisov
,
D. M.
Popova
,
E. A.
Skryleva
,
M. S.
Kuznetsov
,
S. A.
Nos ukhin
,
S. A.
Terentiev
, and
V. D.
Blank
,
Phys. Lett. A
372
,
3914
(
2008
).
20.
A.
Boussadi
,
A.
Tallaire
,
O.
Brinza
,
M. A.
Pinault-Thaury
, and
J.
Achard
,
Diamond Relat. Mater.
79
,
108
(
2017
).
21.
K.
Srimongkon
,
S.
Ohmagari
,
Y.
Kato
,
V.
Amornkitbamrung
, and
S.
Shikata
,
Diamond Relat. Mater.
63
,
21
(
2016
).
22.
M.
Bernard
,
A.
Deneuville
, and
P.
Muret
,
Diamond Relat. Mater.
13
,
282
(
2004
).
23.
K.
Tsukioka
and
H.
Okushi
,
Jpn. J. Appl. Phys.
45
,
8571
(
2006
).
You do not currently have access to this content.