Spatial atomic layer deposition (SALD) is a powerful thin-film deposition technique to control surfaces and interfaces at the nanoscale. To further develop SALD technology, there is need to deepen our understanding of the effects that process parameters have on the deposited film uniformity. In this study, a 3D computational model that incorporates laminar-flow fluid mechanics and transport of diluted species is developed to provide insight into the velocity streamlines and partial-pressure distributions within the process region of a close-proximity atmospheric-pressure spatial atomic layer deposition (AP-SALD) system. The outputs of this transport model are used as the inputs to a surface reaction model that simulates the self-limiting chemical reactions. These coupled models allow for prediction of the film thickness profiles as they evolve in time, based on a relative depositor/substrate motion path. Experimental validation and model parameterization are performed using a mechatronic AP-SALD system, which enable the direct comparison of the simulated and experimentally measured geometry of deposited TiO 2 films. Characteristic features in the film geometry are identified, and the model is used to reveal their physical and chemical origins. The influence of custom motion paths on the film geometry is also experimentally and computationally investigated. In the future, this digital twin will allow for the capability to rapidly simulate and predict SALD behavior, enabling a quantitative evaluation of the manufacturing trade-offs between film quality, throughput, cost, and sustainability for close-proximity AP-SALD systems.

1.
M.
Leskelä
,
M.
Mattinen
, and
M.
Ritala
,
J. Vac. Sci. Technol. B
37
,
030801
(
2019
).
2.
X.
Meng
,
X.-Q.
Yang
, and
X.
Sun
,
Adv. Mater.
24
,
3589
(
2012
).
3.
A. S.
Asundi
,
J. A.
Raiford
, and
S. F.
Bent
,
ACS Energy Lett.
4
,
908
(
2019
).
4.
B. J.
O’Neill
et al.,
ACS Catal.
5
,
1804
(
2015
).
6.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
7.
P.
Poodt
,
D. C.
Cameron
,
E.
Dickey
,
S. M.
George
,
V.
Kuznetsov
,
G. N.
Parsons
,
F.
Roozeboom
,
G.
Sundaram
, and
A.
Vermeer
,
J. Vac. Sci. Technol. A
30
,
010802
(
2012
).
8.
R. L. Z.
Hoye
,
D.
Muñoz-Rojas
,
S. F.
Nelson
,
A.
Illiberi
,
P.
Poodt
,
F.
Roozeboom
, and
J. L.
MacManus-Driscoll
,
APL Mater.
3
,
040701
(
2015
).
9.
K. P.
Musselman
,
C. F.
Uzoma
, and
M. S.
Miller
,
Chem. Mater.
28
,
8443
(
2016
).
10.
P.
Poodt
,
A.
Lankhorst
,
F.
Roozeboom
,
K.
Spee
,
D.
Maas
, and
A.
Vermeer
,
Adv. Mater.
22
,
3564
(
2010
).
11.
D. H.
Levy
,
D.
Freeman
,
S. F.
Nelson
,
P. J.
Cowdery-Corvan
, and
L. M.
Irving
,
Appl. Phys. Lett.
92
,
192101
(
2008
).
12.
P.
Ryan Fitzpatrick
,
Z. M.
Gibbs
, and
S. M.
George
,
J. Vac. Sci. Technol. A
30
,
01A136
(
2012
).
13.
S.
Suh
,
S.
Park
,
H.
Lim
,
Y.-J.
Choi
,
C.
Seong Hwang
,
H.
Joon Kim
, and
S.-J.
Won
,
J. Vac. Sci. Technol. A
30
,
051504
(
2012
).
14.
D.
Muñoz-Rojas
,
H.
Sun
,
D. C.
Iza
,
J.
Weickert
,
L.
Chen
,
H.
Wang
,
L.
Schmidt-Mende
, and
J. L.
MacManus-Driscoll
,
Prog. Photovolt.: Res. Appl.
21
,
393
(
2013
).
15.
A. S.
Yersak
,
Y. C.
Lee
,
J. A.
Spencer
, and
M. D.
Groner
,
J. Vac. Sci. Technol. A
32
,
01A130
(
2013
).
16.
H.
Choi
,
S.
Shin
,
H.
Jeon
,
Y.
Choi
,
J.
Kim
,
S.
Kim
,
S. C.
Chung
, and
K.
Oh
,
J. Vac. Sci. Technol. A
34
,
01A121
(
2015
).
17.
A.
Illiberi
et al.,
J. Vac. Sci. Technol. A
36
,
04F401
(
2018
).
18.
M.-J.
Zhao
et al.,
Nanomaterials
10
,
459
(
2020
).
19.
C. A. M.
de la Huerta
,
V. H.
Nguyen
,
A.
Sekkat
,
C.
Crivello
,
F.
Toldra-Reig
,
P. B.
Veiga
,
S.
Quessada
,
C.
Jimenez
, and
D.
Muñoz-Rojas
,
Adv. Mater. Technol.
5
,
2000657
(
2020
).
20.
L.
Midani
,
W.
Ben-Yahia
,
V.
Salles
, and
C.
Marichy
,
ACS Appl. Nano Mater.
4
,
11980
(
2021
).
21.
C.-H.
Hsu
,
R.-F.
Zhu
,
P.-C.
Kang
,
P.
Gao
,
W.-Y.
Wu
,
D.-S.
Wuu
,
S.-Y.
Lien
, and
W.-Z.
Zhu
,
Mater. Lett.
340
,
134204
(
2023
).
22.
G.
Gurbandurdyyev
,
K.
Mistry
,
L.-V.
Delumeau
,
J. Y.
Loke
,
C. H.
Teoh
,
J.
Cheon
,
F.
Ye
,
K. C.
Tam
, and
K. P.
Musselman
,
ChemNanoMat
9
,
e202200498
(
2023
).
23.
D.
Penley
et al.,
Adv. Mater. Technol.
9
,
2301728
(
2024
).
24.
P.
Poodt
,
R.
Knaapen
,
A.
Illiberi
,
F.
Roozeboom
, and
A.
van Asten
,
J. Vac. Sci. Technol. A
30
,
01A142
(
2011
).
25.
E.
Dickey
and
W. A.
Barrow
,
J. Vac. Sci. Technol. A
30
,
021502
(
2012
).
26.
K.
Ali
,
K.-H.
Choi
,
J.
Jo
, and
Y. W.
Lee
,
Mater. Lett.
136
,
90
(
2014
).
27.
P. S.
Maydannik
et al.,
J. Vac. Sci. Technol. A
32
,
051603
(
2014
).
28.
K.
Sharma
,
R. A.
Hall
, and
S. M.
George
,
J. Vac. Sci. Technol. A
33
,
01A132
(
2014
).
29.
K.
Ali
and
K.-H.
Choi
,
Langmuir
30
,
14195
(
2014
).
30.
A. S.
Yersak
et al.,
J. Vac. Sci. Technol. A
36
,
01A123
(
2017
).
31.
A.
Illiberi
,
C.
Frijters
,
M.
Ruth
,
D.
Bremaud
,
P.
Poodt
,
F.
Roozeboom
, and
P. J.
Bolt
,
J. Vac. Sci. Technol. A
36
,
051511
(
2018
).
32.
M. B. M.
Mousa
,
J. S.
Ovental
,
A. H.
Brozena
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
36
,
031517
(
2018
).
33.
C.
Masse de la Huerta
,
V. H.
Nguyen
,
J.-M.
Dedulle
,
D.
Bellet
,
C.
Jiménez
, and
D.
Muñoz-Rojas
,
Coatings
9
,
5
(
2019
).
34.
T. T.
Nguyen
,
D. N. T.
Kieu
,
H. V.
Bui
,
L. L. T.
Ngoc
, and
V. H.
Nguyen
,
Nanotechnology
35
,
205601
(
2024
).
35.
Z.
Deng
,
W.
He
,
C.
Duan
,
R.
Chen
, and
B.
Shan
,
J. Vac. Sci. Technol. A
34
,
01A108
(
2015
).
36.
D. H.
Levy
,
S. F.
Nelson
, and
D.
Freeman
,
J. Disp. Technol.
5
,
484
(
2009
).
37.
P. S.
Maydannik
,
T. O.
Kaariainen
, and
D. C.
Cameron
,
J. Vac. Sci. Technol. A
30
,
01A122
(
2011
).
38.
P. S.
Maydannik
,
T. O.
Kääriäinen
, and
D. C.
Cameron
,
Chem. Eng. J.
171
,
345
(
2011
).
39.
P.
Poodt
,
J.
van Lieshout
,
A.
Illiberi
,
R.
Knaapen
,
F.
Roozeboom
, and
A.
van Asten
,
J. Vac. Sci. Technol. A
31
,
01A108
(
2012
).
40.
R. L. Z.
Hoye
,
D.
Muñoz-Rojas
,
K. P.
Musselman
,
Y.
Vaynzof
, and
J. L.
MacManus-Driscoll
,
ACS Appl. Mater. Interfaces
7
,
10684
(
2015
).
41.
M. L.
van de Poll
,
H.
Jain
,
J. N.
Hilfiker
,
M.
Utriainen
,
P.
Poodt
,
W. M. M.
Kessels
, and
B.
Macco
,
Appl. Phys. Lett.
123
,
182902
(
2023
).
42.
X.
Wang
,
Y.
Li
,
J.
Lin
,
B.
Shan
, and
R.
Chen
,
Rev. Sci. Instrum.
88
,
115108
(
2017
).
43.
V. H.
Nguyen
,
A.
Sekkat
,
C.
Jiménez
,
D.
Muñoz
,
D.
Bellet
, and
D.
Muñoz-Rojas
,
Chem. Eng. J.
403
,
126234
(
2021
).
44.
Z.
Li
,
K.
Cao
,
X.
Li
, and
R.
Chen
,
Int. J. Heat Mass Transfer
181
,
121854
(
2021
).
45.
S.
Yun
,
M.
Tom
,
G.
Orkoulas
, and
P. D.
Christofides
,
Comput. Chem. Eng.
163
,
107861
(
2022
).
46.
M.
Tom
,
S.
Yun
,
H.
Wang
,
F.
Ou
,
G.
Orkoulas
, and
P. D.
Christofides
,
Comput. Chem. Eng.
168
,
108044
(
2022
).
47.
J. P.
Vale
et al.,
J. Phys. Chem. C
127
,
9425
(
2023
).
48.
J. R.
van Ommen
,
D.
Kooijman
,
M.
de Niet
,
M.
Talebi
, and
A.
Goulas
,
J. Vac. Sci. Technol. A
33
,
021513
(
2015
).
49.
D.
Pan
,
T.-C.
Jen
, and
C.
Yuan
,
Int. J. Heat Mass Transfer
96
,
189
(
2016
).
50.
S.
Franke
et al.,
J. Vac. Sci. Technol. A
35
,
01B117
(
2016
).
51.
52.
W.
Cong
,
Z.
Li
,
K.
Cao
,
G.
Feng
, and
R.
Chen
,
Chem. Eng. Sci.
217
,
115513
(
2020
).
54.
M.
Tom
,
S.
Yun
,
H.
Wang
,
F.
Ou
,
G.
Orkoulas
, and
P. D.
Christofides
, “Multiscale modeling of spatial area-selective thermal atomic layer deposition,” in Computer Aided Chemical Engineering, 33 European Symposium on Computer Aided Process Engineering, edited by A. C. Kokossis, M. C. Georgiadis, and E. Pistikopoulos (Elsevier, New York, 2023), Vol.
52
, pp. 71–76.
55.
S.
Yun
,
H.
Wang
,
M.
Tom
,
F.
Ou
,
G.
Orkoulas
, and
P. D.
Christofides
,
Coatings
13
,
558
(
2023
).
56.
M.
Tom
,
H.
Wang
,
F.
Ou
,
G.
Orkoulas
, and
P. D.
Christofides
,
Coatings
14
,
38
(
2024
).
57.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 2nd ed. (
Cambridge University
,
Cambridge
,
1997
).
58.
K.
Seshan
,
Handbook of Thin Film Deposition Processes and Technologies
, 2nd ed. (
William Andrew
,
Kidlington, Oxford
,
2002
).
59.
R.
Gordon
,
D.
Hausmann
,
E.
Kim
, and
J.
Shepard
,
Chem. Vap. Deposition
9
,
73
(
2003
).
60.
K. W.
Kolasinski
,
Surface Science: Foundations of Catalysis and Nanoscience
, 3rd ed. (
John Wiley & Sons
,
New York
,
2012
).
61.
A.
Yanguas-Gil
and
J. W.
Elam
,
Chem. Vap. Deposition
18
,
46
(
2012
).
62.
R. I.
Masel
,
Principles of Adsorption and Reaction on Solid Surfaces
(
John Wiley & Sons
,
New York
,
1996
).
63.
M.
Reinke
,
Y.
Kuzminykh
, and
P.
Hoffmann
,
J. Phys. Chem. C
119
,
27965
(
2015
).
64.
A. J.
Gayle
,
Z. J.
Berquist
,
Y.
Chen
,
A. J.
Hill
,
J. Y.
Hoffman
,
A. R.
Bielinski
,
A.
Lenert
, and
N. P.
Dasgupta
,
Chem. Mater.
33
,
5572
(
2021
).
65.
K.
Arts
,
V.
Vandalon
,
R. L.
Puurunen
,
M.
Utriainen
,
F.
Gao
,
W. M. M. E.
Kessels
, and
H. C. M.
Knoops
,
J. Vac. Sci. Technol. A
37
,
030908
(
2019
).
66.
M.
Reinke
,
Y.
Kuzminykh
, and
P.
Hoffmann
,
J. Phys. Chem. C
120
,
4337
(
2016
).
You do not currently have access to this content.