We theoretically investigate nonadiabatic quantum spin pumping in zigzag/bearded graphene nanoribbons, in which two bearded graphene nanoribbon regions are deposited by local ferromagnetic insulators to induce spin splitting. We show that spin-polarized currents, spin separation, and even pure spin pumping can be achieved by tuning the driving frequency and the magnetization orientations of the two ferromagnetic insulators. Meanwhile, for the two ferromagnetic insulators with antiparallel/parallel magnetization orientation, the left and right electrodes can simultaneously generate an equal amount of pumped currents with opposite/same spin polarization. Moreover, in the two-parameter spin pumping regime, the flowing directions of the pumped currents can be tuned by the phase difference. This suggests a useful method for manipulating and separating spin in graphene nanoribbons, which is important for spintronic applications.

1.
W.-J.
Jang
,
M. H.
Chang
,
M. J.
Kang
,
Y. J.
Song
, and
S.-J.
Kahng
,
J. Vac. Sci. Technol. A
41
,
062203
(
2023
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
3.
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Physical Properties of Carbon Nanotubes
(
World Scientific Publishing Co
,
London
,
1998
).
4.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
5.
H.
Tian
,
C.
Ren
, and
S.
Wang
,
Nanotechnology
33
,
212001
(
2022
).
6.
C. W. J.
Beenakker
,
Phys. Rev. Lett.
97
,
067007
(
2006
).
7.
W.-T.
Lu
and
Q.-F.
Sun
,
Phys. Rev. B
108
,
195425
(
2023
).
8.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
,
Nat. Phys.
2
,
620
(
2006
).
9.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
10.
J. H.
Gosling
et al.,
Commun. Phys.
4
,
30
(
2021
).
11.
M.
Yankowitz
,
Q.
Ma
,
P.
Jarillo-Herrero
, and
B. J.
LeRoy
,
Nat. Rev. Phys.
1
,
112
(
2019
).
12.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
13.
F.
Pulizzi
,
O.
Bubnova
,
S.
Milana
,
D.
Schilter
,
D.
Abergel
, and
A.
Moscatelli
,
Nat. Nanotechnol.
14
,
914
(
2019
).
14.
L.
Du
,
C. D.
Ren
,
L.
Cui
,
W. T.
Lu
,
H. Y.
Tian
, and
S. K.
Wang
,
Phys. Scr.
97
,
125825
(
2022
).
15.
W.-W.
Tao
,
B.
Liu
,
Q.
Dai
, and
S.-K.
Wang
,
Commun. Theor. Phys.
61
,
391
(
2014
).
16.
L.
Cui
,
H.-M.
Liu
,
C.-D.
Ren
,
L.
Yang
,
H.-Y.
Tian
, and
S.-K.
Wang
,
Acta Phys. Sin.
72
,
166101
(
2023
).
17.
M.
Yaldagard
and
M.
Arkas
,
Molecules
29
,
2129
(
2024
).
18.
W.
Liu
and
Y.
Xu
,
Spintronic 2D Materials: Fundamentals and Applications
(
Elsevier
,
Amsterdam
,
2020
).
19.
M. V.
Tusell
, “Spin dynamics in two-dimensional quantum materials: A theoretical study,” Springer Theses (Springer Nature, Cham, 2021).
20.
A.
Hirohata
,
H.
Sukegawa
,
H.
Yanagihara
,
I.
Žutić
,
T.
Seki
,
S.
Mizukami
, and
R.
Swaminathan
,
IEEE Trans. Magn.
51
,
1
(
2015
).
21.
S.-K.
Wang
,
H.-Y.
Tian
,
Y.-H.
Yang
, and
J.
Wang
,
Chin. Phys. B
23
,
017203
(
2014
).
22.
W.
He
,
S.
Zhang
,
Y.
Luo
, and
S.
Wang
,
J. Supercond. Novel Magn.
37
,
157
(
2024
).
23.
S.
Wang
and
J.
Yu
,
J. Supercond. Novel Magn.
31
,
2789
(
2018
).
24.
M.
Sun
,
S.
Wang
,
Y.
Du
,
J.
Yu
, and
W.
Tang
,
Appl. Surf. Sci.
389
,
594
(
2016
).
25.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
226801
(
2005
).
26.
Spintronics for Next Generation Innovative Devices, Wiley Series in Materials for Electronic and Optoelectronic Applications, edited by K. Sato and E. Saitoh (John Wiley & Sons, Ltd, Chichester, 2015).
27.
C.
Cao
and
J.-H.
Chen
,
Adv. Quantum Technol.
2
,
1900026
(
2019
).
28.
Spin Current, 1st ed., Series on Semiconductor Science and Technology Vol. 22, edited by S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura (Oxford University, Oxford, 2012).
29.
S.
Wang
,
Pratama
,
F. R.
Ukhtary
,
M.
Shoufie
, and
R.
Saito
,
Phys. Rev. B
101
,
081414
(
2020
).
30.
S.
Wang
,
M.
Sun
, and
N. T.
Hung
,
Inorganics
12
,
81
(
2024
).
31.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnár
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
,
Science
294
,
1488
(
2001
).
32.
S. M.
Yakout
,
J. Supercond. Novel Magn.
34
,
317
(
2021
).
33.
S.
Xu
,
H.
Xie
,
Y.
Zhang
,
C.
Zhang
,
W.
Jin
,
G.
Lefkidis
,
W.
Hübner
, and
C.
Li
,
J. Phys. D: Appl. Phys.
57
,
295001
(
2024
).
34.
K.
Meng
,
L.
Guo
, and
X.
Sun
,
Nanoscale Horiz.
8
,
1132
(
2023
).
35.
S.
Wang
,
C.
Ren
,
Y.
Li
,
H.
Tian
,
W.
Lu
, and
M.
Sun
,
Appl. Phys. Express
11
,
053004
(
2018
).
36.
F.
Hagelberg
,
Magnetism in Carbon Nanostructures
(
Cambridge University
,
Cambridge
,
2017
).
37.
S.-Q.
Shen
, Topological Insulators: Dirac Equation in Condensed Matter, 2nd ed., Springer Series in Solid-State Sciences Vol. 187 (Springer, Singapore, 2017).
38.
N.
Bolivar
and
G.
Abellán
,
Quantum Mechanics: Axiomatic Theory with Modern Applications
, 1st ed. (
Apple Academic
,
Oakville
,
2018
).
39.
40.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Science
306
,
1910
(
2004
).
41.
R.
Bansal
,
A.
Kumar
,
N.
Chowdhury
,
N.
Sisodia
,
A.
Barvat
,
A.
Dogra
,
P.
Pal
, and
P. K.
Muduli
,
J. Magn. Magn. Mater.
476
,
337
(
2019
).
42.
H.
Cheraghchi
,
J. Magn. Magn. Mater.
398
,
264
(
2016
).
43.
S.-K.
Wang
and
J.
Wang
,
Chin. Phys. B
24
,
037202
(
2015
).
44.
H.
Bangar
,
A.
Kumar
,
N.
Chowdhury
,
R.
Mudgal
,
P.
Gupta
,
R. S.
Yadav
,
S.
Das
, and
P. K.
Muduli
,
ACS Appl. Mater. Interfaces
14
,
41598
(
2022
).
45.
Recent Advances in Magnetic Insulators—From Spintronics to Microwave Applications, Solid State Physics, edited by M. Wu and A. Hoffmann (Elsevier Inc., Oxford, 2013).
46.
A. K.
Chaurasiya
,
A.
Kumar
,
R.
Gupta
,
S.
Chaudhary
,
P. K.
Muduli
, and
A.
Barman
,
Phys. Rev. B
99
,
035402
(
2019
).
47.
A.
Avsar
,
H.
Ochoa
,
F.
Guinea
,
B.
Özyilmaz
,
B. J.
van Wees
, and
I. J.
Vera-Marun
,
Rev. Mod. Phys.
92
,
021003
(
2020
).
48.
M.
Gmitra
,
S.
Konschuh
,
C.
Ertler
,
C.
Ambrosch-Draxl
, and
J.
Fabian
,
Phys. Rev. B
80
,
235431
(
2009
).
49.
B.
Trauzettel
,
D. V.
Bulaev
,
D.
Loss
, and
G.
Burkard
,
Nat. Phys.
3
,
192
(
2007
).
50.
Q.
Zhou
,
X.
Chen
,
X.
Xu
,
Y.
Hou
,
T.
Lai
, and
D.-X.
Yao
,
Physica E
146
,
115559
(
2023
).
51.
52.
D.
Van Tuan
, Charge and Spin Transport in Disordered Graphene-Based Materials, 1st ed., Springer Theses (Springer, Cham, 2015).
53.
N.
Tombros
,
C.
Jozsa
,
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
van Wees
,
Nature
448
,
571
(
2007
).
54.
W.
Han
,
K.
Pi
,
K. M.
McCreary
,
Y.
Li
,
J. J. I.
Wong
,
A. G.
Swartz
, and
R. K.
Kawakami
,
Phys. Rev. Lett.
105
,
167202
(
2010
).
55.
W.
Han
and
R. K.
Kawakami
,
Phys. Rev. Lett.
107
,
047207
(
2011
).
56.
H.
Tian
,
S.
Wang
,
J.
Hu
, and
J.
Wang
,
J. Phys.: Condens. Matter
27
,
125005
(
2015
).
57.
D.
Gunlycke
and
C. T.
White
,
J. Vac. Sci. Technol. B
30
,
03D112
(
2012
).
58.
59.
L.
Zhang
and
H. Y.
Tian
,
Eur. Phys. J. B
93
,
75
(
2020
).
60.
M.-H.
Liu
,
J.
Bundesmann
, and
K.
Richter
,
Phys. Rev. B
85
,
085406
(
2012
).
61.
X.-H.
Wang
,
J. J.
Wang
,
J.
Wang
, and
J.-F.
Liu
,
Phys. Rev. B
103
,
195442
(
2021
).
62.
M.
Switkes
,
C. M.
Marcus
,
K.
Campman
, and
A. C.
Gossard
,
Science
283
,
1905
(
1999
).
63.
S. K.
Watson
,
R. M.
Potok
,
C. M.
Marcus
, and
V.
Umansky
,
Phys. Rev. Lett.
91
,
258301
(
2003
).
64.
S.
Souma
and
M.
Ogawa
,
Appl. Phys. Lett.
104
,
183103
(
2014
).
65.
Q.
Zhang
,
K. S.
Chan
, and
Z.
Lin
,
Appl. Phys. Lett.
98
,
032106
(
2011
).
66.
Y.
Zhou
and
M. W.
Wu
,
Phys. Rev. B
86
,
085406
(
2012
).
67.
F.
Bourbour
,
M.
Esmaeilzadeh
,
S. M.
Elahi
, and
L.
Eslami
,
J. Appl. Phys.
127
,
164303
(
2020
).
68.
L. E. F.
Foa Torres
,
S.
Roche
, and
J.-C.
Charlier
,
Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport
, 2nd ed. (
Cambridge University
,
Cambridge
,
2020
).
69.
M.
Moskalets
and
M.
Büttiker
,
Phys. Rev. B
66
,
205320
(
2002
).
70.
T. S.
Li
,
M. F.
Lin
,
S. C.
Chang
, and
T. C.
Lin
,
J. Phys. Chem. Solids
73
,
1245
(
2012
).
71.
Z.
Xiong
,
L.
Zhong
,
H.
Wang
, and
X.
Li
,
Materials
14
,
1192
(
2021
).
72.
M. D.
Bhatt
,
H.
Kim
, and
G.
Kim
,
RSC Adv.
12
,
21520
(
2022
).
73.
Y.
Kobayashi
,
K.-I.
Fukui
,
T.
Enoki
, and
K.
Kusakabe
,
Phys. Rev. B
73
,
125415
(
2006
).
74.
Z.
Liu
,
K.
Suenaga
,
P. J. F.
Harris
, and
S.
Iijima
,
Phys. Rev. Lett.
102
,
015501
(
2009
).
75.
K.
Suenaga
and
M.
Koshino
,
Nature
468
,
1088
(
2010
).
76.
S.
Xia
,
Y.
Liang
,
L.
Tang
,
D.
Song
,
J.
Xu
, and
Z.
Chen
,
Phys. Rev. Lett.
131
,
013804
(
2023
).
77.
W.
Jaskólski
,
A.
Ayuela
,
M.
Pelc
,
H.
Santos
, and
L.
Chico
,
Phys. Rev. B
83
,
235424
(
2011
).
78.
S.
Singh
,
J.
Katoch
,
T.
Zhu
,
K.-Y.
Meng
,
T.
Liu
,
J. T.
Brangham
,
F.
Yang
,
M. E.
Flatté
, and
R. K.
Kawakami
,
Phys. Rev. Lett.
118
,
187201
(
2017
).
79.
S.
Tapar
and
B.
Muralidharan
,
Phys. Rev. B
107
,
205415
(
2023
).
80.
V. A Saroka, F. Kong, L. Bogani, C. A. Downing, R. B. Payod, F. R. Fischer, and X. Sun
,
Phys. Rev. B
110
,
195134
(
2024
).
81.
F.
Liu
and
K.
Wakabayashi
,
Phys. Rev. Res.
3
,
023121
(
2021
).
82.
J. T. J.
Marcellino
,
M.-J.
Wang
,
S.-K.
Wang
, and
J.
Wang
,
Chin. Phys. B
27
,
57801
(
2018
).
83.
Y.
Gu
,
Y. H.
Yang
,
J.
Wang
, and
K. S.
Chan
,
J. Phys.: Condens. Matter
21
,
405301
(
2009
).
84.
S.
Wang
,
N. T.
Hung
,
H.
Tian
,
M. S.
Islam
, and
R.
Saito
,
Phys. Rev. Appl.
16
,
024030
(
2021
).
85.
M. V.
Moskalets
,
Scattering Matrix Approach to Non-Stationary Quantum Transport
(
Imperial College
,
Singapore
,
2011
).
86.
G.
Cohen
and
M.
Galperin
,
J. Chem. Phys.
152
,
090901
(
2020
).
87.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N.
Van Dau
,
F.
Petroff
,
P.
Etienne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
,
Phys. Rev. Lett.
61
,
2472
(
1988
).
88.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
,
4828
(
1989
).
89.
Y.
Zhang
,
M.
Jiang
,
J.
Hua
,
Sun
,
Q.
Feng
, and
X. C.
Xie
,
Phys. Rev. B
81
,
165404
(
2010
).
90.
J. P.
Hobson
and
W. A.
Nierenberg
,
Phys. Rev.
89
,
662
(
1953
).
91.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
54
,
17954
(
1996
).
92.
K.-T.
Wang
,
H.
Wang
,
F.
Xu
,
Y.
Yu
, and
Y.
Wei
,
New J. Phys.
25
,
013019
(
2023
).
93.
J.
Chu
et al.,
Adv. Mater.
33
,
2004469
(
2021
).
94.
E. C.
Castro
,
D. S.
Brandão
,
H.
Bragança
,
A. S.
Martins
,
F.
Riche
,
A. C.
Dias
,
J. H.
Zhao
,
A. L. A.
Fonseca
, and
F.
Qu
,
Phys. Rev. B
107
,
035439
(
2023
).
95.
H.
Ma
,
Y.
Zhu
,
Y.
Liu
,
R.
Bai
,
X.
Zhang
,
Y.
Ren
, and
C.
Jiang
,
Chin. Phys. B
32
,
107201
(
2023
).
96.
Z.
Wang
,
C.
Tang
,
R.
Sachs
,
Y.
Barlas
, and
J.
Shi
,
Phys. Rev. Lett.
114
,
016603
(
2015
).
97.
98.
L.
Su
,
X.
Fan
,
T.
Yin
,
H.
Wang
,
Y.
Li
,
F.
Liu
,
J.
Li
,
H.
Zhang
, and
H.
Xie
,
Adv. Opt. Mater.
8
,
1900978
(
2020
).
99.
C.
Zhao
et al.,
Nat. Nanotechnol.
12
,
757
(
2017
).
100.
J.
Qi
,
X.
Li
,
Q.
Niu
, and
J.
Feng
,
Phys. Rev. B
92
,
121403
(
2015
).
101.
Q.
Zhang
,
S. A.
Yang
,
W.
Mi
,
Y.
Cheng
, and
U.
Schwingenschlögl
,
Adv. Mater.
28
,
959
(
2016
).
102.
Q.
Zhang
,
S. A.
Yang
,
W.
Mi
,
Y.
Cheng
, and
U.
Schwingenschlögl
,
Adv. Mater.
28
,
7043
(
2016
).
103.
J.
Dang
,
M.
Yang
,
X.
Xie
,
Z.
Yang
,
D.
Dai
,
Z.
Zuo
,
C.
Wang
,
K.
Jin
, and
X.
Xu
,
Small
18
,
2106029
(
2022
).
104.
107.
W.
Zheng
,
Y.
Jiang
,
X.
Hu
,
H.
Li
,
Z.
Zeng
,
X.
Wang
, and
A.
Pan
,
Adv. Opt. Mater.
6
,
1800420
(
2018
).
108.
T.
Zhang
et al.,
Adv. Funct. Mater.
32
,
2204779
(
2022
).
109.
Valleytronics in 2D Materials, edited by K. E. J. Goh, C. P. Y. Wong, and T. Wang (World Scientific Publishing Co. Pte. Ltd., Singapore, 2023).
110.
L.
Li
,
S.
Jiang
,
Z.
Wang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Shan
, and
K. F.
Mak
,
Phys. Rev. Mater.
4
,
104005
(
2020
).
You do not currently have access to this content.